In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.
In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.
In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.
기상레이더를 통해 취득된 데이터에는 지형에코, 파랑에코, 이상에코, 그리고 청천에코등이 존재한다. 각 에코는 여러 종류의 비강수에코이고, 이 비강수에코를 제거하기 위해 각 에코들의 특성을 분석하였다. 기상레이더 데이터는 매우 방대한 양이기 때문에 전처리 절차를 통해 분석된다. 본 논문에서는 클러스터링 기반 방사형 기저함수 신경회로망(RBFNNs : Radial Basis Function Neural Networks)과 에코 판단 모듈을 이용하여 기상레이더 데이터에서 강수에코와 비강수에코들을 구별하기 위한 에코 패턴분류기를 설계하였다. HCM(Hard C-Mean) 클러스터링 기반 RBFNNs 와 FCM(Fuzzy C-Mean) 클러스터링 기반 RBFNNs를 이용하여 출력성능은 비교 및 분석된다.
In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.
This paper proposes an efficient array beamforming method using spatial matched filtering for ultrasound imaging. In the proposed method, ultrasound waves are transmitted from an array subaperture with fixed transmit focus as in conventional array imaging. At receive, radio frequency (RF) echo signals from each receive channel are passed through a spatial matched filter that is constructed based on the system transmit-receive spatial impulse response. The filtered echo signals are then summed. The filter remaps and spatially registers the acoustic energy from each element so that the pulse-echo impulse response of the summed output is focused with acceptably low side lobes. Analytical beam pattern analysis and simulation results using a linear array show that the proposed spatial filtering method can provide more improved spatial resolution and contrast-to-noise ratio (CNR) compared with conventional dynamic receive focusing (DRF) method by implementing two-way dynamically focused beam pattern throughout the field.
자발에코대조(spontaneous echo contrast)는 B 모드 초음파 영상에서 관찰되는 소용돌이 모양의 연기 같은 에코 패턴으로, 일반적으로 혈액 정체 또는 저유량 상태에서 발생한다. 이러한 혈류역학적 교란은 느린 흐름으로 인해 낮은 전단 응력을 발생시켜 혈관내피세포의 기능 장애를 유발하고 응고 인자인 섬유소원의 활성화를 촉진한다. 결과적으로 적혈구를 포함한 혈액 세포가 쉽게 응집하여 혈전 형성의 전구체인 자발에코대조를 형성한다. 자발에코대조는 주로 좌심방확장증이 있는 환자의 좌심방이나 심방세동 환자의 좌심방귀에서 발견되며, 드물게 경동맥에서도 관찰될 수 있다. 이 사례 보고서에서는 전이성 암환자의 경동맥이중초음파검사 중 관찰된 자발에코대조의 영상 소견을 제시하고 임상적 의미를 논의하고자 한다.
계량어군탐지기를 이용하여 저서어를 대상으로 에코적분을 행하는 경우, 적분범위의 하한을 결정하기 위해 설정하는 해저기준이나 해저오프셋은, 저서어 자원량추정의 중요한 요인 중의 하나이다. 해저부근의 어군에코의 해석으로부터 해저기준의 결정방법과 최적 오프셋에 관하여 고찰한 결과, 다음과 같은 결과를 보였다. 1) 적분층의 폭을 5m로 하여, 적분범위를 1샘플링씩 해저방향으로 이동하면서, 해저부근의 S$\sub$a5m/의 변화를 본 결과, 해저부근의 어군에코를 적분하기 위해서는, 적분범위의 하한을 가능한 해저까지 접근시켜야 한다. 2) 에코레벨의 역치로서 해저검출을 행한 경우, 역치가 클수록 해저 검출 불능횟수가 증가하고, 작을수록 해저 오검출 횟수가 늘어 났다. 3) 에코레벨의 최대변화점을 해저기준으로 한 해저검출법은, 그 정도가 매우 높았으며, 나아가 에코레벨의 변동에 대해 아주 안정한 해저기준 알고리 즘으로 적합하였다. 4) 이 해저검출 알고리즘에 의하면, 최적해저오프셋은 해저 기준으로부터 0.4ms이내였고, 이것은 펄스파형과 해저지형에 대한 음향빔에 의존한다.
황해 백령도 주변해역에 분포하는 해저면 연계퇴적층의 음향상 연구를 위해 고해상 탄성파 탐사자료를 분석하였다. 해저지형 및 내부 음향상 특징에 의하면 연구지역에 분포하는 천부퇴적층은 총 7개의 음향상으로 구분된다. 내부 반사면이 약간 혹은 양호하게 발달하거나 내부반사면을 전혀 수반하지 않는 평탄한 해저면(음향상 1-1, 1-2)은 연구지역의 남쪽에 주로 분포한다. 파형의 표면구조를 수반하는 평탄한 해저면(음향상 1-3)은 중부해역에 발달한다. 평탄한 해저면 혹은 파형의 표면구조를 수반하는 마운드 형태의 해저면 특징(음향상 2-1, 2-2, 2-3)은 중부해역에 분포한다. 내부 반사면이 발달하지 않고 불규칙한 침식흔적을 갖는 해저면(음향상 3-1)은 조사해역의 북부해역인 백령도 외해쪽에 주로 존재한다. 음향상의 분포 및 퇴적물 특성에 의하면 연구지역의 퇴적환경은 뚜렷한 3 지역으로 구분되는 바 (1) 강한 조류의 영향으로 심한 침식작용이 진행되고 있는 북쪽지역, (2) 해수면 상승과 연계된 조류의 영향으로 형성된 사퇴가 분포하는 중부해역, (3) 박층의 해침 사질층이 분포하고 있는 남부해역 등으로 구성된다. 연구지역에 분포하는 7 음향상을 포함하는 이와 같은 퇴적층은 홀로세 해침동안 해수면 상승 및 강한 조류와 연계된 퇴적작용을 반영한다.
패턴 인식 분야에 있어서 데이터 분류는 해당 데이터에서 유용한 정보를 추출하기 위해서 반드시 수행해야 하는 과정 중 하나이다. AdaBoost 알고리즘은 Boosting 알고리즘을 실제 데이터 분석에 이용할 수 있도록 개량한 것으로, Random guessing이나 Random forest와 같이 정확한 결과를 도출할 확률이 50%보다 조금 높은 약한 분류기와 가중치 값의 조합을 통해 높은 분류 성능을 가지는 강한 분류기를 생성하는 방법을 뜻한다. 본 논문에서는 AdaBoost 알고리즘을 이용하여 비강수에코 중 강수에코와 그 특성이 유사하여 기상 예보를 수행하는 데 방해가 되는 채프에코를 식별하는 알고리즘의 구현에 대한 연구를 수행하였다. 기상 현상 관측을 위해 사용하는 레이더 데이터를 정적 클러스터링과 동적 클러스터링 과정을 통해서 유사도를 기반으로 한 클러스터를 생성한 후, 이를 예보관의 채프에코 판별 결과에 따라 채프에코와 비채프에코로 나누어 학습 데이터를 구성한 후 AdaBoost 알고리즘에 적용하여 분류기를 구현하였다. 제안한 AdaBoost 알고리즘의 성능을 검증하기 위하여 실제 채프에코가 발생한 레이더 데이터를 적용하였으며, 실험 결과를 통해서 제안한 알고리즘이 효과적으로 채프에코를 분류할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.