• Title/Summary/Keyword: Echo environmental

Search Result 83, Processing Time 0.025 seconds

Developing Slope Investigation Technic of Underwater Facility using MBES (MBES 측량에 의한 수중구조물 기울기 조사에 관한 연구)

  • Kim, Dong-Moon;Park, Jae-Kook;Park, Hyeong-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • It has an important meaning that the maintenance and management of facility for a onshore construction shall be damaged by oceanic environment. A movement and displacement of these shall be investigated by up-to-date machinery tools like GPS and Lidar and MBES & Gyro. In current a lot of tools and methods for investigation shall be used as a displacement and movement on land mainly. For underwater facility it is very difficult to check because of special conditions below the water surface. In this study, a surveying methods for a movement and displacement of underwater facility as caisson shall be used, i.e. multibeam-echo-sounding system. A possibility as basic data for displacement and environmental monitoring shall be studied by MBES to acquire a caisson's inclination.

Coastal Shallow-Water Bathymetry Survey through a Drone and Optical Remote Sensors (드론과 광학원격탐사 기법을 이용한 천해 수심측량)

  • Oh, Chan Young;Ahn, Kyungmo;Park, Jaeseong;Park, Sung Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.

Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific (서태평양 해저산 고코발트 망간각 자원평가를 위한 광역 탐사 방안)

  • Kim, Jonguk;Ko, Young-Tak;Hyeong, Kiseong;Moon, Jai-Woon
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.569-580
    • /
    • 2013
  • Co-rich ferromanganese crusts (Fe-Mn crusts) distributed on the seamounts in the western Pacific are potential economic resources for cobalt, nickel, platinum, and other rare metals in the future. Regulations for prospecting and exploration of Fe-Mn crusts in the Area, which enables the process to obtain an exclusive exploration right for blocks of the fixed size, were enacted recently by the International Seabed Authority, which led to public attention on its potential for commercial development. Evaluation and selection of a mining site can be established based on abundance and grade of Fe-Mn crusts in the site as well as topography that should be smooth enough for mining efficiency. Therefore, acquisition of shipboard echo-sounding and acoustic backscatter data are prerequisite to select potential mine sites in addition to visual and sampling operations. Acoustic backscatter data can be used to locate crust-covered areas in a regional scale with the understanding of acoustic properties of crust through its correlation with visual and sampling data. KIOST had collected the topographic and geologic data to assess the resources potential for Fe-Mn crusts in the west Pacific region from 1994 to 2001. However, they could not obtain acoustic backscatter data that is crucial for the selection of prospective mining sites. Therefore, additional exploration surveys are required to carry out side scan sonar mapping combined with seafloor observation and sampling to decide the blocks for application of an exclusive exploration right.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment (천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요)

  • Cho, Sungho;Kang, Donhyug;Lee, Cheol-Ku;Jung, Seom-Kyu;Choi, Jee Woong;Oh, Suntaek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.411-422
    • /
    • 2015
  • This paper presents an overview of the geological environment investigation and underwater acoustic measurements for the purpose of "Study on the Relationship between the Geological Environment and Acoustic Propagation in Shallow Water", which are jointly carried out by KIOST (Korea Institute of Ocean Science & Technology) and Hanyang University in the western shallow water off the Taean peninsula in the Yellow Sea in April-May 2013. The experimental site was made up of various sediment types and bedforms due to the strong tidal currents and coastal geomorphological characteristics. The geological characteristics of the study area were intensively investigated using multi-beam echo sounder, sub-bottom profiler, sparker system and grab sampler. Acoustic measurements with a wide range of research topics in a frequency range of 20~16,000 Hz: 1) low frequency sound propagation, 2) mid-frequency bottom loss, 3) spatial coherence analysis of ambient noise, and 4) mid- frequency bottom backscattering were performed using low- and mid-frequency sound sources and vertical line array. This paper summarizes the topics that motivated the experiment, methodologies of the acoustic measurements, and acoustic data analysis based on the measured geological characteristics, and describes summary results of the geological, meteorological, and oceanographic conditions found during the experiments.

The Symbols of the Body Image Expressed in Modern Fashion Design (현대 패션디자인에 표현된 신체이미지의 상징성)

  • 권기영;조필교
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.5
    • /
    • pp.681-706
    • /
    • 2000
  • This study is intended to understand an implication system and significance in the current community which a body image symbolizes by correlating it with fashion that is on the rise as a principal issue in various fields. For this study, the symbolism of the body image was contemplated in terms of philosophy and art, and then on the basis of it, the symbolism of the body image shown in modern fashion design was analyzed through fashion works. The research results are as follows, 1. The manifestation of sex can be taken as the symbolism of the body image which is expressed in modern fashion design. Recently sexual chaos and vagueness such as homosexuality and bisexuality are expressed through a dress and its ornaments. Though displaying sexual characteristics of male and female as they are exposing a sign or a diagram, decorating a part of body or representing sex in garments, uncertain sex identity in modern society is manifested in dress and its ornaments. It is to deny absoluteness regarding sex and emphasize diversity indwelt in human beings, and after all it shows to pursue the human essence. 2. Another symbolism of the body image is body expression as the human race and an ethnic group. The discriminating situations and the restoration of their status appeared in modern fashion too. Moreover, their cultures and issues came to alter the aesthetic standard of body made from a view of the Western white supremacist. Hereupon, fashion trends like ethnic fashion, Orientalism and African look etc. appear according to this tendency, which represents race and national identity and in addition, which signifies to present transcendental human conception embracing alienated human conception. 3. The symbolism of the body image expressed in a body, and a dress and its ornaments as nature can be considered in terms of the concern on environmental contamination and the respect of echo system. Getting away from reigning over, developing and stamping down nature at their will, the human beings pursue unity with nature, which is described in fashion. They are stressing that natural materials and objects such as animal, plant and soil etc. should activily be introduced into fashion and humans are a communal fate group and should reframe their status in nature at last. 4. The body image shown in a body, a dress and its ornaments as technology is transformed and recreated by modern scientific techniques and medical science to show post human conception namely, forthcoming future human conception as a cyborg which loses individual identity. This presents a perfect future human conception with high level of preternatural power but after all, leaves us a task to seek the meaning of human existence in alienation caused by the loss of human identity and existence. In this manner, the moderns crave for perceiving the identity of a natural human being in the current thoughts tendency of the modern times such as postmodernism, post structuralism, deconstructionism, feminism and so on, which build discussions affecting the art and fashion worlds. The categories, like sexual characteristics indwelt in a human body, racial classifications, the natural environment surrounding human beings and development of science, bring out the importance of the internal and external meaning in today's fashion which a human body contains, and present sew human conception in the coming future society.

  • PDF

A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam (원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구)

  • Hwang, Deuk Jae;Woo, Han Jun;Koo, Bon Joo;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.975-987
    • /
    • 2021
  • Potential habitat mapping of Meretrix lyrata which is found in large parts of South East Asian tidal flat was carried out to find out causes of collective death. Frequency Ratio (FR) method, one of geospatialstatistical method, was employed with some benthic environmental factors; Digital elevation model (DEM) made from Landsat imagery, slope, tidal channel distance, tidal channel density, sedimentary facesfrom WorldView-02 image. Field survey was carried out to measure elevation of each station and to collect surface sediment and benthos samples. Potential habitat maps of the all clams and the juvenile clams were made and accuracy of each map showed a good performance, 76.82 % and 69.51 %. Both adult and juvenile clams prefer sand dominant tidal flat. But suitable elevation of adult clams is ranged from -0.2 to 0.2 m, and that of juvenile clams is ranged from 0 to 0.3 m. Tidal channel didn't affect the habitat of juvenile clams, but it affected the adult clams. In the furtherstudy, comparison with case of Korean tidal flat will be carried out to improve a performance of the potential habitat map. Change in the benthic echo-system caused by climate change will be predictable through potential habitat mapping of macro benthos.

Acoustic Characterization of Three Seamounts Located in the Northwest of Marshall Islands, Western Pacific (서태평양 마샬제도 북서쪽에 위치한 세 해저산에 대한 음향상 연구)

  • Lee, Tae-Gook;Lee, Kie-Hwa;Moon, Jai-Woon;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Sang-Mook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.193-206
    • /
    • 2004
  • Geophysical data including chirp (3 7 kHz) subbottom profile and detailed bathymetry were obtained over three seamounts in the Ogasawara Fracture Zone (OFZ) of the western Pacific, as a part of manganese crust survey onboard R/V Onnuri in 2003. The OFZ is a 150-km-wide, 600-km-long rift zone, which separates the East Mariana and Pigafetta Basin. The OFZ is unique in that it includes many seamounts (e.g., Magellan Seamounts andseamounts on the Dutton Ridge). The sub-seafloor acoustic echoes obtained near the OFZ were classified into following types on the basis of their characteristics: types I-1(pelagic sediment with parallel or subparallel reflectors), I-2 (pelagic sediment with no internal reflectors), and III-1 (reef build-up complex) on summit; types II-1 and III-2 (basement outcrop) on flank rift zone and upper slope, respectively; type III-3 (slump) on the lower slope and embayment between the flank rift zones; types II-2 (debrite) on the base of slope and basin floor; and types II-3 (turbidite or pelagic sediment) and II-4 (turbidite) on the basin floor. The mass-wasting that produced the complex of type II-2 debrite and III-3 slump on the lower slope and basin may have been caused by (1) strong tensional stress in the OFZ which may cause the numerous fissures or basement faults and (2) complex of the faults on the summit and steep upper slope. The variations in the echo type of pelagic sediment in the summit of seamounts may be related with the changes in the depositional and/or erosional environments. Type I-2 pelagic sediment, which is characterized by a thin and intermittent coverage, was probably deposited at a sheltered area when the current was strong, whereas type I-1 pelagic deposit occurred during a stage of progressive sedimentation.

  • PDF

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.