• 제목/요약/키워드: Eccentric Load

검색결과 225건 처리시간 0.021초

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

유한요소법을 이용한 캠버볼트의 편심단조 공정설계 (Design of eccentric forging process for camber bolts using finite element method)

  • 김관우;추연근;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.320-324
    • /
    • 2016
  • 본 연구에서는 일반 볼트와 달리 두께가 얇고 단면적이 넓은 편심원형 플랜지구조를 가진 캠버볼트의 편심단조공정을 제시하였다. 캠버볼트는 일반 볼트와 같이 축대칭 형상으로 단조 후, 플랜지 부분을 트리밍하여 가공한다. 따라서 단조과정에서는 높은 단조 하중과 대량의 칩이 발생한다. 이와 같은 문제점을 해결하기 위해 새로운 단조공정이 요구된다. 편심단조공정은 일반적인 단조공정과 달리 중심축에서 편심 된 상태로 가공하는 새로운 단조 공정이다. 또한 편심단조공정은 단조하중과 단조 후 트리밍 칩의 양을 줄일 수 있다. 이러한 캠버볼트의 편심단조공정설계를 위해 편심유도금형의 편심량과 금형형상의 최적화가 필요하다.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

편심 무게 부하를 갖는 영구자석 동기 전동기의 속도리플 저감기법 분석 (Analysis of Speed Ripple Reduction Methods for Permanent Magnet Synchronous Motor with Eccentric-weight Load)

  • 박정우;김종무;이기욱
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.164-172
    • /
    • 2004
  • This paper presents the comparison results of some kinds of control method in circumstance of eccentric load. The plant to be controlled is a computed tomography(CT) driven by a permanent magnet synchronous motor. In a CT system, many units are attached on the rotationally part of a gantry such as x-ray tube, detector, heat exchanger, and data acquisition unit etc. Therefore keeping many components to balance which have different weight is not easy; this is inescapable problem in the all CT systems. To solve this problem against eccentric load, some kinds of control method have been compared and analysed by using protype CT. From the experimental results it is vilified that the CT drive system with model reference control method indicates higher speed regulation ability regardless of variable eccentric weight and uncertain position, and also in the limit condition of constant eccentric weight and fixed position, the compensation method with sinusoidal form is a strong candidate in view of speed ripple reduction.

복개 터널구조물에 작용하는 편토압 고려를 위한 수치해석적 연구 (A study on eccentric load acted on cut and cover tunnel by numerical approach)

  • 배규진;정형식;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제5권3호
    • /
    • pp.227-239
    • /
    • 2003
  • 복개 터널구조물은 친환경적 건설을 위하여 성토체는 일정 구배를 갖는 경사시공을 하게되고, 이로 인하여 복개 터널구조물에는 편토압이 작용하게 된다. 현재 복개 터널구조물의 설계를 위하여 일반적으로 적용되고 있는 구조공학적 해석시 연직토압은 콘크리트 라이닝 상부 성토체를 상재하중으로 고려하여 산정하고, 좌 우측에 작용하는 횡방향 토압은 정지토압 분포를 적용하고 있다. 그러나 이러한 토압분포는 콘크리트 라이닝 좌 우측 측벽부 외측에서 성토체의 경사시공에 의한 편토압의 영향을 고려할 수 없다. 따라서, 본 연구에서는 성토사면에 의한 편토압을 고려한 합리적인 복개 터널구조물 해석 및 설계를 위한 기본연구로써, 지반공학적 모델링 기법을 이용하여 성토사면에 의한 편토압 고려 방안을 제안하였으며, 구조공학적 해석기법을 통하여 제안된 편토압 고려방안의 적용성을 검토하였다.

  • PDF

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석 (Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads)

  • 홍상현;노화성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.105-113
    • /
    • 2018
  • 교량 내하력 추정을 위해 제안된 모델에서는 응답계수를 충격계수 응답스펙트럼을 활용하여 산정하고 있다. 이때 충격계수 응답스펙트럼은 오일러-베르누이 보 모델을 바탕으로 차량이동하중이 교량의 폭 방향으로 중앙부에 재하 된 조건으로 생성된 결과이다. 따라서 중앙부 차량재하가 아닌 편측 이동하중재하 시 충격계수와 응답계수의 변화를 분석해 볼 필요가 있다. 이를 위해 본 연구에서는 폭이 10m인 2차선 단순교를 대상으로 이동하중해석을 실시하여 최대 충격계수와 응답계수 변화를 분석하였다. 수치해석 결과, 중앙부 재하조건 대비 편측 재하조건 적용 시 최대 정적 및 동적 변위 모두 증가하지만 동적변위 보다 정적변위의 증가량이 더 크기 때문에 충격계수는 오히려 감소하게 된다. 하지만 이러한 차이는 0.5%p 미만으로서 그 영향이 크지 않다. 그리고 응답계수의 경우, 편측 재하조건으로 인해 정적응답계수보다 동적응답계수에서 차이가 더 크게 나타나지만 편측 재하에 따른 오차율의 차이는 0.18%p 정도로 매우 작았다. 즉, 편측 이동하중재하가 응답계수에 미치는 영향은 거의 없으며, 응답계수 산정에 있어서 중앙부 이동하중재하 조건으로 생성된 충격계수 응답스펙트럼을 활용하여도 충분한 예측이 가능하다고 판단된다.

Eccentric performance of CFST columns jacketed with steel tube and sandwiched concrete

  • Weijie Li;Yiyan Lu;Yue Huang;Shan Li
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.89-102
    • /
    • 2023
  • This study investigates the eccentric performance of concrete-filled steel tubular (CFST) stub columns strengthened with steel tube and sandwiched concrete (STSC) jackets. It was revealed that the STSC jacketing method effectively weakened the cracking of concrete in CFST columns on the convex side and the crash on the concave side. Substantial increases in the eccentric bearing capacities were demonstrated after strengthening. A numerical study was further conducted. The decrease in diameter-to-thickness ratio and increase in strength of outer tube contributed to increase in peak load of all components, whereas the increase in sandwiched concrete strength resulted in load increase on itself and had negligible effects on other components. The parametric study showed the effect of inner concrete strength on columns' bearing capacity was magnified after strengthening, whereas that of inner tube thickness was reduced. Within the parameters investigated, high-strength concrete and high-strength steel can be applied without the concern of early abrupt failure of inner low-strength concrete or steel tube.

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.