• Title/Summary/Keyword: Ebb-dominance

Search Result 16, Processing Time 0.016 seconds

Propagation of tidal wave and resulted tidal asymmetry upward tidal rivers (감조하천에서 조석 전파 및 조석비대칭)

  • Kang, Ju Whan;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.433-442
    • /
    • 2021
  • In order to examine the characteristics of tidal wave from the estuary to upsteam of tidal river, tidal asymmetry was identified based on analysis of the harmonic constants of M2 and M4 tidal constituents in the domestic western coastal regions. As shallow water tide is greatly developed in the estuary, flood dominance in Han River and Keum River, and ebb dominance in Youngsan River are developed. These tidal asymmetries can be reconfirmed by analyzing the tidal current data. Unlike having reciprocating tidal current patterns in Keum and Youngsan estuaries, rotaing tidal current pattern is shown in the Han River estuary due to the complex topography and waterways around Ganghwa Island area. However, when residual current is removed, flood dominance is shown in consistency with the tide data. The tidal asymmetry in the estuary tends to intensify with the growth in shallow water tide as the tidal wave propagates to upstream of tidal river. Energy dissipation, in shallow Han River and Keum River classified as SD estuaries, is very large regarding bottom friction characteristics. On the other hand, the deep Youngsan River, classified as a WD estuary, shows less energy dissipation.

A Two-dimensional Numerical Simulation of Cohesive Sediment Transport in the Mokpo Coastal Zone (목포해역의 점착성 퇴적물 이동에 관한 2차원 수치모의)

  • Choi, Jong-Hwa;Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Sedimentary environment in coastal zone has been changing due to a large number of coastal structures and continuous coastal development. As a result, the environment has been changing. In particular, the economic and environmental damage can occur due to cohesive sediment transport closely related with the fate of pollutants. Due to large sea wall construction the ebb dominance in the Mokpo coastal waters has been clearer. Cohesive sediment transport was simulated by the EFDC model. The simulated SS showed good agreements with the observed SS. From the sensitivity analysis of sediment parameters, we found out that the erosion rate, the critical shear stresses for erosion and deposition, and the settling velocity are important factors in cohesive sediment transport modeling.

3-D Applicability of the ESCORT Model - Simulation of Freshwater Discharge (ESCORT 모형의 3차원 적용성 - 담수방류 모의)

  • Kang, Ju-Whan;Kim, Yang-Seon;Park, Seon-Jung;So, Jae-Kwi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.230-240
    • /
    • 2009
  • The ESCORT model is applied at Mokpo coastal zone to analyze the effect of fresh water discharge released from the gates of the Youngsan River sea-dyke. Applicability and validity of both 2-D and 3-D hydrodynamic modules could be guaranteed by simulating hydrodynamic feature with ebb dominance characteristics. Then, effects of the released discharge on the hydrodynamics are investigated. And analysis of the effects on diffusion phenomena show that 3-D model is essential for such diffusion modelling. Moreover, vertical salinity distributions near the gates are examined, and the influence range of fresh water is also estimated, which shows that dilution of fresh water is going on slowly because of poor flushing.

Geochemical Characteristics and Benthos Distribution in the Three Shellfish Farms in Suncheon Bay, Korea (순천만 패류 양식장 3개소의 지화학적 특성과 저서생물상 분포 -가리맛조개 양식장과 새꼬막 양식장-)

  • Suh, Jinsoo;Kim, Taehoon;Shin, Seyeon;Kahng, Hyung-Yeel;Ahn, Samyoung;Jung, Jae-Sung;Kim, Youngsung;Won, Nam-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.691-710
    • /
    • 2017
  • This study was performed to investigate the geochemical and benthic environment of three shellfish farms in Suncheon Bay during the period of September 2014 ~ April 2015. Three sampling stations were selected; St.1 is the shellfish farm of razor clam near Jangsan area. St.2 is the shellfish farm of small ark shell near Hwapo area and St.3 is the shellfish farm of razor clam near Yongdu area. Razor clam was the dominant species at St.1, small ark shell and granulated ark shell were dominant at St.2 and St.3, respectively. Granulated ark shell inhabited St.3, although it is not cultured at that station. This station's exposure to air during the ebb tide and sediment composition likely provides the appropriate habitat for granulated ark shell species. Analysis of the number of different species showed that 8 benthos species were found to be distributed at St.1, 18 species at St.2, and 13 species at St.3. Among three stations, the highest Ignition Loss (IL), Chemical Oxygen Demand (COD) and Acid Volatile Sulfide (AVS) values were obtained from the sediment at St.2. The analysis of pore water from St.2 also showed the highest values of Total Organic Carbon (TOC), ammonia ($NH_4^+$), Dissolved Inorganic Nitrogen (DIN) and phosphate ($PO_4^{3-}$). These results are related to the fact that species dominance and richness is the highest in St.2.

Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea (경기만 염하수로에서의 비정규 격자 수치모델링을 통한 조간대 조수로의 고려에 따른 Mass Transport 특성)

  • Kim, Minha;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.41-51
    • /
    • 2013
  • The tidal creek dependent mass transport characteristic in Gyeong-Gi Bay (west coast of Korea) was studied using field measured data and numerical model. Gyeong-Gi Bay consists of 3 main tidal channels and contains a well-developed vast tidal flat. This region is famous for its large tidal difference and strong current. We aim to study the effect of tidal creek in the tidal flat on the mass exchange between the estuary and the ocean. For numerical application, the application of unstructured grid feature is essential, since the tidal creek has complicated shape and form. For this purpose, the FVCOM is applied to the study area and simulation is performed for 2 different cases. In case A, geographic characteristics of the tidal creek is ignored in the numerical grid and in case B, the tidal creek are constructed using unstructured grid. And these 2 cases are compared with the field measured cross-channel mass transport data. The cross-channel mass transport at the Yeomha waterway mouth and Incheon harbor was measured in June, 9~10 (Spring tide) and 17~18 (Neap tide), 2009. CTD casting and ADCP cross-channel transect was conducted 13 times in one tidal cycle. The observation data analysis results showed that mass transport has characteristic of the ebb dominance Line 1 (Yeomha waterway mouth), on the other hand, a flood dominant characteristic is shown in Line 2 (Incheon harbor front). By comparing the numerical model (case A & B) with observation data, we found that the case B results show much better agreement with measurement data than case A. It is showed that the geographic feature of tidal creek should be considered in grid design of numerical model in order to understand the mass transport characteristics over large tidal flat area.

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.