• Title/Summary/Keyword: EasyOCR

Search Result 9, Processing Time 0.029 seconds

Recognition of Korean Menu for Online to Offline Stores : VGG-ResNet Fusion Model with Attention Mechanism (Online to Offline 상점을 위한 한글 메뉴판 인식 : 어텐션 메커니즘을 적용한 VGG-ResNet 융합 모델)

  • Jongwook Si;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.190-197
    • /
    • 2024
  • The O2O store model dissolves the boundaries between online and offline platforms, providing significant convenience to customers. To effectively operate such platforms, small business owners must provide necessary information in digital format. Specifically, the process of digitizing Korean menus manually can lead to multiple issues, and the use of OCR technology often results in high error rates due to the low accuracy in recognizing Korean. In response, this paper proposes an enhanced OCR model based on the popular EasyOCR framework, aimed at improving the recognition accuracy of Korean. The proposed model integrates the structural advantages of VGG and ResNet, and incorporates an attention mechanism to significantly improve the recognition performance of Korean. Moreover, experimental results indicate that the proposed model achieved approximately a 3.5% improvement in accuracy and around a 1% improvement in both confidence score and normalized edit distance compared to EasyOCR. Therefore, this demonstrates that the proposed method effectively addresses the existing challenges.

Real-time Character Detection System Using EAST Model and OCR (EAST 모델과 OCR을 이용한 실시간 문자 탐지 시스템)

  • Ye-Jun Choi;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.683-684
    • /
    • 2023
  • 웹페이지나 디지털 문서에는 특정 단어나 특정 문구를 검색하는 기능이 있다. 인쇄된 도서나 참고서 등과 같은 인쇄물에는 실시간으로 특정 단어나 특정 문구를 찾는 기능이 없어 어려움을 겪는 경우가 많다. 본 논문에서는 텍스트를 감지(Detection)하는 EAST 모델과 텍스트를 인식(Recognition)하는 EasyOCR을 활용한 실시간 문자 탐지 시스템의 개발내용에 대해 기술한다. 이 시스템을 통해 사용자는 인쇄물에서 실시간으로 원하는 단어나 문구를 찾아 필요한 정보를 빠르게 읽는 것에 효과적일 것을 기대한다.

  • PDF

Real-time Printed Text Detection System using Deep Learning Model (딥러닝 모델을 활용한 실시간 인쇄물 문자 탐지 시스템)

  • Ye-Jun Choi;Song-Won Kim;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.523-530
    • /
    • 2024
  • Online, such as web pages and digital documents, have the ability to search for specific words or specific phrases that users want to search in real time. Printed materials such as printed books and reference books often have difficulty finding specific words or specific phrases in real time. This paper describes the development of a deep learning model for detecting text and a real-time character detection system using OCR for recognizing text. This study proposes a method of detecting text using the EAST model, a method of recognizing the detected text using EasyOCR, and a method of expressing the recognized text as a bounding box by comparing a specific word or specific phrase that the user wants to search for. Through this system, users expect to find specific words or phrases they want to search in real time in print, such as books and reference books, and find necessary information easily and quickly.

Easy Echo-Platform For Home Repair Everywhere, 'Green Hammer' (어디서나 쉬운 에코 기반 홈수리 플랫폼 '그린망치')

  • Kim, Ho-Jun;Kim, Ji-Sim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.137-138
    • /
    • 2022
  • 코로나 팬데믹이 장기화되고 경제가 침체되면서 사람들이 가장 많이 머무는 집 안에서 가전제품과 가구를 수리나 상호판대 등을 통해 재사용할 수 있는 방법에 관한 관심이 커지고 있다. 특히, 가전이나 가구를 수리하여 제품을 오래 사용한다면 개인의 경제에 도움이 될 뿐만 아니라, 장기적으로는 환경을 보호하는 효과도 거둘 수 있다. 따라서 본 연구에서는 유사한 기존 앱들의 단점을 보완하여 홈수리 앱을 개발하였다. 지역적, 시간적 제약을 극복하고 환경까지 보호할 수 있는 친환경 플랫폼인 '그린망치'를 개발하였다. 본 앱은 다양한 API와 OCR 기능을 활용하여 사용자 중심의 수리 서비스를 제공하고 친환경 자재의 사용을 유도하는 서비스를 제공한다.

  • PDF

A Study on the Development of a Tool to Support Classification of Strategic Items Using Deep Learning (딥러닝을 활용한 전략물자 판정 지원도구 개발에 대한 연구)

  • Cho, Jae-Young;Yoon, Ji-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.967-973
    • /
    • 2020
  • As the implementation of export controls is spreading, the importance of classifying strategic items is increasing, but Korean export companies that are new to export controls are not able to understand the concept of strategic items, and it is difficult to classifying strategic items due to various criteria for controlling strategic items. In this paper, we propose a method that can easily approach the process of classification by lowering the barrier to entry for users who are new to export controls or users who are using classification of strategic items. If the user can confirm the decision result by providing a manual or a catalog for the procedure of classifying strategic items, it will be more convenient and easy to approach the method and procedure for classfying strategic items. In order to achieve the purpose of this study, it utilizes deep learning, which are being studied in image recognition and classification, and OCR(optical character reader) technology. And through the research and development of the support tool, we provide information that is helpful for the classification of strategic items to our companies.

Knowledge Based Intelligent Photoshot-to-Translation System

  • Wa, Tam-Heng
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.284-287
    • /
    • 2003
  • In recent years, most of the researches on pattern recognition are for medical diagnosis or for characters recognition. In fact its applications are very wide. In this paper, the pattern recognition is employed by linguistic translation, i.e. the output of Pattern Recognition is translated into another language. In this paper, it focuses on several fields: (1) System overview-explicate the functions of each part individually; (2) Criteria on the system-discuss the difficulties in each part; (3) System implementation-discuss how to design the approaches for constructing the system. Furthermore, intelligent approaches are considered be use on the system in different parts. They are discussed in the late paper, and also we concentrate on user interface, which can make a serious of processes in order, and easy control-just only pressing a few buttons. It is a new and creative attempt in digital system.

  • PDF

Development of a Multi-template type Image Segmentation Algorithm for the Recognition of Semiconductor Wafer ID (반도체 웨이퍼 ID 인식을 위한 다중템플릿형 영상분할 알고리즘 개발)

  • Ahn, In-Mo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.167-175
    • /
    • 2006
  • This paper presents a method to segment semiconductor wafer ID on poor quality images. The method is based on multiple templates and normalized gray-level correlation (NGC) method. If the lighting condition is not so good and hence, we can not control the image quality, target image to be inspected presents poor quality ID and it is not easy to identify and then recognize the ID characters. Conventional several method to segment the interesting ID regions fails on the bad quality images. In this paper, we propose a multiple template method, which uses combinational relation of multiple templates from model templates to match several characters of the inspection images. To find out the optimal solution of multiple template model in ID regions, we introduce newly-developed snake algorithm. Experimental results using images from real FA environment are presented.

Development of an Image Segmentation Algorithm using Dynamic Programming for Object ID Marks in Automation Process (동적계획법을 이용한 자동화 공정에서의 제품 ID 마크 자동분할 알고리듬 개발)

  • 유동훈;안인모;김민성;강동중
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.726-733
    • /
    • 2004
  • This paper presents a method to segment object ID(identification) marks on poor quality images under uncontrolled lighting conditions of automated inspection process. The method is based on dynamic programming using multiple templates and normalized gray-level correlation (NGC) method. If the lighting condition is not good and hence, we can not control the image quality, target image to be inspected presents poor quality ID marks and it is not easy to identify and recognize the ID characters. Conventional several methods to segment the interesting ID mark regions fail on the bad quality images. In this paper, we propose a multiple template method, which uses combinational relation of multiple templates from model templates to match several characters of the inspection images. To increase the computation speed to segment the ID mark regions, we introduce the dynamic programming based algorithm. Experimental results using images from real factory automation(FA) environment are presented.

A Study On YouTube Fake News Detection System Using Sentence-BERT (Sentence-BERT를 활용한 YouTube 가짜뉴스 탐지 시스템 연구)

  • Beom Jung Kim;Ji Hye Huh;Hyeopgeon Lee;Young Woon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.667-668
    • /
    • 2023
  • IT 기술의 발달로 인해 뉴스를 제공하는 플랫폼들이 다양해 졌고 최근 해외 인터뷰 영상, 해외 뉴스를 Youtube Shorts형태로 제작하여 화자의 의도와는 다른 자막을 달며 가짜 뉴스가 생성되는 문제가 대두되고 있다. 이에 본 논문에서는 Sentence-BERT를 활용한 YouTube 가짜 뉴스 탐지 시스템을 제안한다. 제안하는 시스템은 Python 라이브러리를 사용해 유튜브 영상에서 음성과 영상 데이터를 분류하고 분류된 영상 데이터는 EasyOCR을 사용해 자막 데이터를 텍스트로 추출 후 Sentence-BERT를 활용해 문자 유사도를 분석한다. 분석결과 음성 데이터와 영상 자막 데이터가 일치한 경우 일치하지 않은 경우보다 약 62% 더 높은 문장 유사도를 보였다.