• Title/Summary/Keyword: Eastern Sea

Search Result 732, Processing Time 0.027 seconds

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

Holocene Sea Level Changes in the Eastern Yellow Sea: A Brief Review using Proxy Records and Measurement Data (황해 동부 연안의 홀로세 해수면 변화: 대리기록과 관측자료를 통한 재검토)

  • Lee, Eunil;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.520-532
    • /
    • 2015
  • In order to understand the Holocene sea level changes in the eastern Yellow Sea, the west coast of Korea, and to compare the rates of sea level rise in each period of time, the geological proxy records for pre-instrumental era and measurement data for the present day were combined and analysed. The sea level in the Yellow Sea rose fast with a rate of about 10 mm/yr during the early Holocene, and decelerated down to 1 mm/yr since the mid to late Holocene. The rising rates of sea level in the 20th century were slightly higher than those in the late Holocene. The present-day rates of sea level rise, known as the 'rapid' rise, are in fact much lower or similar, compared to the early to mid Holocene sea levels in the study area. Recent tide-gauge data show that sea level rise in the eastern Yellow Sea has been accelerating toward the 21st century. These rising trends coincide well with global rising patterns in sea level. Additionally, the present-day rising trends of sea level in this study are correlated with increased rates of carbon dioxide concentrations and sea surface temperatures, further indicating a signal to global warming associated with the human effect. Thus, the sea level changes induced by current global warming observed in the eastern Yellow Sea and world's oceans can be considered as 'Anthropocene' sea level changes. The changes in sea level are based on instrumental measurements such as tide-gauges and satellite altimetry, meaning the instrumental era. The Holocene changes in sea level can thus be reconstructed from geological proxy records, whereas the Anthropocene sea-level changes can be solely based on instrumental measurements.

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations (여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험)

  • Kwon, Kyung-Man;Choi, Byoung-Ju;Lee, Sang-Ho;Cho, Yang-Ki;Jang, Chan-Joo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.155-168
    • /
    • 2011
  • Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

An Estimation of Water Structure and Dynamics in the East/Japan Sea Shelf Zone Using Acoustic Tomography

  • Akulichev, Victor Anatolievich;Bezotvetnykh, Vladimir Victorovich;Morgunov, Yury Nikolaevich;Polovinka, Yury Alexandrovich;Strobykin, Dmitry Sergeevich
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • When evaluating acoustic methods for measuring physical parameters in the ocean, economical and technical considerations are paramount. As an indirect method of estimating ocean dynamics, acoustic tomography has advantages over more conventional approaches. It allows the reconstruction of temperature and flow fields from the acoustic impulse time-of-flight measured along the rays propagating from the source to the receiver. However, many problems require complicated and expensive systems. To use the acoustic tomography method to best effect, developing hardware systems with sources and receivers mounted permanently on the sea bottom is crucial. Akulichev et al. presented some experimental results from shallow zones of the World Ocean that served as a motive for developing a multifunction system with acoustic hardware and software. Here we present technical features and the sea test results of the system.

Potentially Toxic Diatoms Pseudo-nitzschia fraudulenta and P. calliantha from Russian Waters of East/Japan Sea and Sea of Okhotsk

  • Stonik, I.V.;Orlova, T.Yu.;Begun, A.A.
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Potentially toxic diatoms Pseudo-nitzschia calliantha and P. fraudulenta were found in bottle samples of phytoplankton collected in Amurskii Bay (East/Japan Sea) and in the coastal waters of Sakhalin Island (East/Japan Sea and Sea of Okhotsk) in different seasons during 2002-2006. The mass development of these species occurred in October and November 2002 at water temperatures of $6-16^{\circ}C$ and salinities of 28.8-33.5 PSU. The highest concentrations of P. calliantha and P. fraudulenta were about $2{\times}10^5\;cells\;L^{-1}$ and $1.5{\times}10^5\;cells\;L^{-1}$, respectively. P. fraudulenta was found for the first time in the Russian waters of the East/Japan Sea. Morphological descriptions of these species based on observation with light and electron microscopy and information on their ecology are presented. Data on the geographical distribution of these species are supplemented.

Comparison of Alkenone Equations for Surface Water Temperature Estimation in the Eastern South Sea and Southern East Sea, Korea (한반도 동남해와 남동해 표층수에서 알케논 수온계산식의 비교)

  • Shin, Kyung-Hoon;Yoon, Suk-Hee
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • A series of long chain unsaturated ketone (alkenone) was identified in the particulate organic matter sampled from surface water of the eastern South Sea, Korea. The seawater temperature based on the $C_{37}$ alkenone was calculated by using several different equations of unsaturation index(${U^{K'}}_{37}$), compared with in situ CTD temperature. Among the previously reported equations, the equation(0.044T-0.204) which was proposed by Sawada et al.(1996) seems to be the most useful for the calculation of $C_{37}$ alkenone temperature, showing average $0.51^{\circ}C$ difference between ${U^{K'}}_{37}$ temperature and in situ CTD temperature. This result suggest that alkenone should be a useful molecular biomarker for reconstructing paleo-environmental change in the South and East Sea, Korea. However, it is required to establish more reliable equation for the calculation of $C_{37}$ alkenone temperature.

Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity (조위 및 수온, 염분 데이터를 이용한 동해 연안의 해수면 변화)

  • Park, Se-Young;Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.801-806
    • /
    • 2014
  • Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).

The Effect of the Oceanic Condition on Variations of the Catches of Alaska Pollack in the East Sea (the Japan Sea)

  • HONG Chul-hoon;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.997-1004
    • /
    • 1997
  • The effect of the oceanic condition on variations of the catches of Alaska pollack (Theragra chalcogramma) in the East Sea (the Japan Sea) is examined using monthly catches data of this fish and temperature data during 1972 to 1991. Since 1973 the catches of Alaska pollack have gradually increased, showing a peak in 1981, and then rapidly decreased after 1986. A significant negative correlation was found between variations of the catches and the temperature at 50 m depth offshore Mukho. In 1981, the year of the highest catches in the study period, the water mass in the Eastern Korean Coastal Sea of the East Sea was extremely cold, while the year of poor catch, 1979, was much warmer than the annual mean temperature. The results show that the temperature variations around the Eastern Korean Coastal Sea play an important role in the variations of the catches of Alaska pollack, implying that the effect of the Tsushima Warm Current is also very important.

  • PDF

A Study on Characteristics of Coastline Change in Eastern Coast Korea (한국 동해안의 변화특성)

  • 이종태
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 1979
  • This paper concerns the receding of the eastern coastline of Korean peninsula at a macroscopic point of view, the result is as following. 1. Eastern coast is gradually developed from maturity stage to full maturity stage. 2. The coastline recession due to sea level rise is amounted to the receding distance, x=0.045 m per yr. 3. The author proposes another classification from the new view point, which is classified by comparing quantities between river supplying sediment loads, and the littoral drifting due to wave actions. According this, eastern coast is receding(Type Q-A), and we could find it's geomorphological characteristics. 4. The general piofile of eastern coast sand beach is erosional storm profile(Type I) which accompany offshore bar. 5. From the wave measuring data of eastern coast(Hoopo port), I can derive the linear regression line of the exceedance probability of wave height from the log-normal distribution. $z=O. 113+4.335 log_lo H, r=0.983.$ Above equation made it possible to estimate $\omega[=P(H>H_c)]for the effective wave height H_c=2. Om4, 4. Om and their corresponding values are considerable (7.8%, 0.3%) 6. Eastern coastline certainly have the tendency of erosive and receding, owing to the sea level rise, poor sediment source and effective wave actions. It's very desirable to survey coastline evolution for a long time systematically, in order to make more elaborate diagnosis.

  • PDF

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.