• 제목/요약/키워드: Eastern Anti Atlas

검색결과 3건 처리시간 0.016초

Petrographic and Magnetic Fabric Investigation of the Tadaout-Tizi n'Rsas Dyke Swarms in the Eastern Anti-Atlas, Morocco

  • Daoud, Mustapha Ait;Essalhi, Mourad;Essalhi, Abdelhafid;Toummite, Abdeslam
    • 자원환경지질
    • /
    • 제54권6호
    • /
    • pp.629-647
    • /
    • 2021
  • Located in the eastern part of the Anti-Atlas, the Tafilalet region shows numerous dykes and sills that crosscut the Paleozoic terrains. The magmatic structures (dykes and sills) of the Tadaout-Tizi n'Rsas (TTR) anticline is studied here, it located neighboring the main branch of the Anti-Atlas Major Fault (AAMF), known in this location as the Oumejrane-Taouz Fault (OJTF). The N20° to N60° trending dykes crosscut the Paleozoic formations (Ordovician to Devonian), whereas sills are injected into the Silurian and Devonian ones. The dyke swarms of TTR have been studied using the Anisotropy of Magnetic Susceptibility (AMS), petrographic study and structural analyses. The petrographic study of the TTR doleritic dykes shows a dominance of plagioclase feldspars, alkali feldspars, amphiboles, pyroxenes and biotite. The dykes contain also mesotype (natrolite), sphene (titanite), apatite, actinolite and pegmatitic enclaves of biotite, orthoclase feldspars and pelites. Concerning field works, they show the deformation of TTR dykes by the Variscan tectonics events, it is marked by the presence of displacements (strike-slip faults) and cleavages. The Magnetic Susceptibility (MS) measured on magmatic specimens show the dominance of ferromagnetic and paramagnetic minerals. The high values of MS in the dykes are due to the presence of hematite, amphibole, pyroxene and biotite. In addition their magnetic fabric, determined by our AMS study, allows us to reconstitute the tectonic event which affected the magmatic bodies. This one is characterized by a magnetic foliation and a NNW-trending lineation that reflect the Variscan shortening orientation.

Lithological and Structural Lineament Mapping from Landsat 8 OLI Images in Ras Kammouna Arid Area (Eastern Anti-Atlas, Morocco)

  • Es-Sabbar, Brahim;Essalhi, Mourad;Essalhi, Abdelhafid;Mhamdi, Hicham Si
    • 자원환경지질
    • /
    • 제53권4호
    • /
    • pp.425-440
    • /
    • 2020
  • The study area is located in the southern part of the M'aider Paleozoic basin in the Moroccan Eastern Anti-Atlas. It is an arid region, characterized by minimal vegetation cover, which can provide an ideal environment to apply remote sensing. In this study, remote sensing and field investigations were integrated for lithological and structural lineaments mapping. The Landsat 8 OLI data were processed in order to understand the role of lithology and geological structures in the distribution of mineral deposits in the study area. To achieve this purpose, the Color Composite (CC), the Principal Component Analysis (PCA) and Band Rationing transformation (BR) tests were performed. The results of remote sensing techniques coupled with field investigations have shown that the zones of high lineaments densities are highly correlated with the occurrences of barite mineralization. These findings depict a spatial relationship between structural lineaments and the mineralization distribution zones. Therefore, the barite and Iron oxides mineralization veins, which occur mainly in the Ras Kammouna district, seem to have a structural control. The methodological approach used in this study examining lithological mapping and lineament extractions can be used to explore mineral deposits in arid regions to a high degree of efficiency.

Contribution of Geophysics to the Study of Barite Mineralization in the Paleozoic Formations of Asdaf Tinejdad (Eastern Anti Atlas Morocco)

  • Ibrahim, Dakir;Ahmed, Benamara;Habiba, Aassoumi;Abdessalam, Ouallali;Youssef, Ait Bahammou
    • 자원환경지질
    • /
    • 제53권3호
    • /
    • pp.259-269
    • /
    • 2020
  • The use of the geophysical method in mining prospecting has been studied in the Asdaf region (South-East of Morocco). The objective of the study is to examine the aptitude of the electrical technique, in this case induced polarization (IP) and electric tomography, combined with the electromagnetic method (VLF), in the exploration of barite . The result obtained by the pseudo-sections of electrical tomography and that of KH filtration highlighted anomalies of resistant contact (greater than 400Ω.m) and of high charge chargeability (5mV / V). These contacts are hosted in less resistant Devonian age shale and sandstone. The resistivity response obtained at their level is characteristic of the venous structures associated with barite mineralization. The direction of the mineralized veins is parallel to the direction of the fractured zones (NE-SW), which indicates that the mineralization in place is due to the tectonic movements of the Hercynian orogeny (from Devonian to Permian). These veins are aligned with the locations of abandoned mine shafts and with surface mining areas. Geophysical technique therefore seems to play a key role in barite mining exploration.