• 제목/요약/키워드: East Sea circulation

검색결과 190건 처리시간 0.031초

세격자체계의 황해 및 동지나해 조석모형의 개발 (Development of Fine-grid Numerical Tidal Models of the Yellow Sea and the East China Sea)

  • 최병호
    • 한국해안해양공학회지
    • /
    • 제2권4호
    • /
    • pp.231-244
    • /
    • 1990
  • 본 연구의 장기적인 목적은 황해와 동지나해 육붕에서의 중규모적 순환 역학을 조사하는 데 있다. 슈퍼콤의 등장과 흐름의 해상력을 제고시키기 위해 전 육붕해역을 위도상 1/15도, 경도상 1/12도 격자간격을 갖는 수치해석모형을 수립하였다. 첫 단계로서 육붕해의 우세한 조석현상인 주태음양일주조의 조석체계를 산정하였다. 초기결과가 제시되었으며 추후의 모형개선을 위한 토의를 하였다.

  • PDF

2021년 7월 동해에서 발생한 극한 고온현상과 기작 (Record-breaking High Temperature in July 2021 over East Sea and Possible Mechanism)

  • 이강진;권민호;강현우
    • 대기
    • /
    • 제32권1호
    • /
    • pp.17-25
    • /
    • 2022
  • As climate change due to global warming continues to be accelerated, various extreme events become more intense, more likely to occur and longer-lasting on a much larger scale. Recent studies show that global warming acts as the primary driver of extreme events and that heat-related extreme events should be attributed to anthropogenic global warming. Among them, both terrestrial and marine heat waves are great concerns for human beings as well as ecosystems. Taking place around the world, one of those events appeared over East Sea in July 2021 with record-breaking high temperature. Meanwhile, climate condition around East Sea was favorable for anomalous warming with less total cloud cover, more incoming solar radiation, and shorter period of Changma rainfall. According to the results of wave activity flux analysis, highly activated meridional mode of teleconnection that links western North Pacific to East Asia caused localized warming over East Sea to become stronger.

What is Happening in the East Sea (Japan Sea)?: Recent Chemical Observations during CREAMS 93-96

  • Kim, Kyung-Ryul;Kim, Kuh
    • Journal of the korean society of oceanography
    • /
    • 제31권4호
    • /
    • pp.164-172
    • /
    • 1996
  • CREAMS (Circulation Research of the East Asian Marginal Seas) Expeditions have provided a rare opportunity to carry out precise measurements of salinity, temperature and chemical tracers extensively in all major basins of the East Sea (Japan Sea) in 1993-1996 for the first time in more than 60 years since Uda's investigation (Uda, 1934). Studies revealed unequivocal evidence that the East Sea Proper Water (ESPW), previously known as a single homogeneous water mass, is indeed made of several distinct water masses. CREAMS data further confirmed the earlier observations of Gamo et al. (1986) that properties in Deep Waters in the East Sea have been changing during at least the last 25 years. There is evidence, especially from the analysis of the DO profile, that these changes may result from a major change in the mode of deep water formation: from bottom water formation in the past to intermediate/deep water formation in recent years. The causes for these changes are not clear at the present time, but nay include natural variation and may also reflect recent global changes in regional scale. A moving-boundary box model is presented to describe current observations, predicting the turnover time of the total deep and bottom waters to the cold surface waters to be ${\sim}$80 years in 1996.

  • PDF

The oceanic condition of the Tsushima Warm Current region the southern part of the East Sea (Sea of Japan) In June, 1996

  • 이충일;조규대
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.167-174
    • /
    • 2003
  • Oceanic conditions of the Tsushirm Wann Current (1WC) region in the southern area if the East Sea (the Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in $19\%$ and in this period, two branch of the TWC exist and the first branch of the TWC flows inshore if the Japanese coastal region compared to tfr1t in the other years, especially in the sfr1llower water layer at less th:1n about 2mm. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf zone in the Japanese coastal region and offshore and identified by geostrophic calculation Intrusion if the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt- Vaisala frequency.

  • PDF

95년 한국동해에서의 수온전선과 와동류의 구조 및 특성조사 (The characteristics and structures of thermal front and warm eddy observed in the southeastern part of the east sea in 1995)

  • 임근식;왕갑식;윤재열;김기철;김영규;김구
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.120-135
    • /
    • 1996
  • The characteristics and fluctuations of structures and spatial distributions of thermal fronts and warm eddy in the Southeastern part of the East sea are discussed based on the data collected by the Naval Academy, Korea during Feb. 6-9, May 9-19 and Oct. 12-18, 1995. The thermal fronts existed very often at the sea off the Pohang-Ulsan, The generation of the thermal front is related with the development of the North Korea Cold Current. The warm eddy is located in the central part of the Ulleung basin where the local depth exceeds 1500m. This warm eddy is a major contributor to mass transport in the northern part of the East Sea. It is evident that knowledge of warm eddy is important in understanding the circulation in the western part of the East Sea.

  • PDF

1991년부터 2017년까지 표층 뜰개 자료를 이용하여 계산한 동해의 평균 표층 해류와 해류 변동성 (Estimation of Mean Surface Current and Current Variability in the East Sea using Surface Drifter Data from 1991 to 2017)

  • 박주은;김수윤;최병주;변도성
    • 한국해양학회지:바다
    • /
    • 제24권2호
    • /
    • pp.208-225
    • /
    • 2019
  • 동해의 평균 표층 순환과 표층 해류의 변동성을 이해하기 위하여 1991년부터 2017년까지 동해를 지나간 표층 뜰개들의 궤적을 분석하였다. 표층 뜰개 자료를 분석하여 동해 표층 해류들을 그 주경로 별로 분류하고, 이들 해류의 변동을 조사하였다. 동한난류는 한국 동해안을 따라 북쪽으로 흐르며 $36{\sim}38^{\circ}N$에서 이안한 후 동해 중앙($131{\sim}137^{\circ}E$)에서 동쪽으로 흐른다. 이때 해류 경로의 평균 위도는 $36{\sim}40^{\circ}N$의 범위를 가지며, 남북으로 큰 진폭을 갖고 사행한다. 표층 뜰개 경로의 평균 위도가 $37.5^{\circ}N$ 이남(이북)일 때 사행진폭이 상대적으로 크며(작으며) 진폭은 약 100 (50) km이다. 동해 중앙에서 표층 뜰개들은 $37.5{\sim}38.5^{\circ}N$를 따라 동쪽으로 흐르는 경로를 가장 빈번하게 지나간다. 동해 북부 블라디보스토크 연안에 투하된 표층 뜰개들은 연안을 따라 남서쪽으로 이동하다가 일본분지 서쪽에서 반시계방향 순환을 따라 남동쪽으로 이동한 후 $39{\sim}40^{\circ}N$에서 동쪽으로 사행하여 이동한다. 다음으로 동해를 $0.25^{\circ}$ 간격으로 격자를 나누어 각 격자를 통과하는 표층 뜰개들의 이동 속도 벡터 자료로 동해 평균 표층 해류 벡터장과 속력장을 구하였다. 그리고 $0.5^{\circ}$ 격자 간격으로 해류장의 분산타원을 계산하였다. 울릉분지 서쪽에서는 동한난류의 경로가 매년 변화하고, 야마토분지에서는 해류의 사행과 소용돌이가 많아 해류의 변동성(분산)이 크다. 표층 뜰개의 주 이동 경로, 평균 해류 벡터장, 분산을 모두 반영하여 표층 뜰개 자료에 근거한 동해 표층 해류 모식도를 제시하였다. 이 연구는 그동안 인공위성 고도계 자료를 이용하여 구한 표층 지형류와 해양수치모델로 모의한 해류를 중심으로 연구해 왔던 동해 표층 순환을 라그랑지 관측 자료를 통해 정리했다는 데 의의가 있다.

Chemical Imprints of the Upwelled Waters off the Coast of the Southern East Sea of Korea

  • Lee, Tong-Sup;Kim, Il-Nam
    • Journal of the korean society of oceanography
    • /
    • 제38권3호
    • /
    • pp.101-110
    • /
    • 2003
  • We made intensive observations on the coastal upwelling off the coast of the southern East Sea from June to August in 2001. The upwelling exhibited a weekly waxing and waning. The coastal upwelling of the year 2001 was characterized by abrupt outbreaks and the small local scale. Upwelling occurred more frequently off the coast of Ulsan and Gampo as reported by the earlier observers. The spread of freshly upwelled colder water was varied by each upwelling event. Generally cold waters were carried away northeastward off Pohang province. The upwelled cold waters were saltier than the resident surface waters. The pH and salinity-normalized alkalinity support the idea that the upwelled waters originate from the interior of the East Sea. The extraordinarily high concentration of dissolved oxygen suggests that the upwelled waters are closely connected to the southward flowing North Korea Cold Current. Although a lower primary productivity was reported for the upwelling region, underway surface fluorescence measurement revealed that the recently upwelled waters supported up to an order of magnitude higher algal biomass than the ambient waters. Because thermohaline circulation of the East Sea is so vigorous, with an estimated time scale of less than one hundred years, that the coastal upwelling should be considered not as an anomaly but as a regular component of a circulatory system. A quantitative understanding of upwelling seems to be a key to elucidate material cycling and the associated biological production in the East Sea.

동해 중층에 발달하는 인산염 대 규산염 비의 불연속층 (Phosphate vs. Silicate Discontinuity Layer Developed at Mid-Depth in the East Sea)

  • 김봉국;이동섭;김일남
    • Ocean and Polar Research
    • /
    • 제32권3호
    • /
    • pp.331-336
    • /
    • 2010
  • The CREAMS (Circulation Research of the East Asian Marginal Sea) survey in 1999 revealed a sharp mid-depth discontinuity of the phosphate:silicate ratio in all basins of the East/Japan Sea. Incidentally, this discontinuity layer corresponds to the oxygen minimum layer. Directly below the discontinuity layer, oxygen concentration is increased. This increase in oxygen concentration is interpreted as a proof of intermediate water formation. Oxygen minimum indicates that the water parcel is old and stable against mixing. So it seems be an efficient barrier to vertical exchange of materials. This means that, once materials enter the lower domain, they rarely return to the upper domain. Therefore, the biogeochemistry of the East/Japan Sea depends heavily on material input through the Korea Strait, and flux is expected to be sensitive to the climate change. As a result, the East/Japan Sea ecosystem seems vulnerable to tipping (regime shift), which occurred on a decadal time scale.

Application of the Ventilation Theory to the East Sea

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • 제32권1호
    • /
    • pp.8-16
    • /
    • 1997
  • The ventilation theory developed by Luyten, Pedlosky and Stommel (1983) is applied to the East Sea to understand the general circulation pattern of the Intermediate Water, especially the ventilated circulation beneath the Tsushima Warm Current. The original model is slightly modified such that it takes the inflow-outflow of the Tsushima Current into consideration. Results of the model indicate that for sufficiently strong Ekman pumping, the Intermediate Water circulates cyclonically by ventilation. The Intermediate Water subducts beneath the Tsushima Warm Water through the western boundary layer. Off the western boundary layer, it turns northward, outcrops to the north by passing the polar front and continues to flow northward until it finally is absorbed by the northern boundary layer. This result seems to be compatible with some recent observations. Over the ventilated area, the transport of the Tsushima Current is negligible and most transport occurs in the shadow area where the Intermediate layer is motionless indicating that, over the deep motionless layer, the two-layered vertical structure under consideration becomes substantially single-layered.

  • PDF

황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향 (On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction)

  • 이종찬;김창식;정경태;전기천
    • Ocean and Polar Research
    • /
    • 제25권spc3호
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.