• Title/Summary/Keyword: East Asian traditional medicine

Search Result 112, Processing Time 0.021 seconds

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.

Modulation of Inflammation by Plant Resources (식물 자원을 활용한 염증반응 조절)

  • Ha-Nul Lee;Su Hui Seong;Bo-Ram Kim;Jin-Ho Kim;Chan Seo;Sua Im;Jung Eun Kim;Ji Min Jung;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.17-17
    • /
    • 2023
  • Chrysanthemum zawadskii (C. zawadskii) is used in traditional East Asian medicine for the treatment of various diseases, including inflammatory disease. However, it has remained unclear whether extracts of C. zawadskii inhibit inflammasome activation in macrophages. The present study assessed the inhibitory effect of an ethanol extract of C. zawadskii (CZE) on the activation of the inflammasome in macrophages and the underlying mechanism. Bone marrow[-derived macrophages (BMDMs) were obtained from wild-type C57BL/6 mice. The release of IL-1β and lactate dehydrogenase in response to nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activators, such as ATP, nigericin and monosodium urate (MSU) crystals, was significantly decreased by CZE in lipopolysaccharide(LPS)-primed BMDMs. Western blotting revealed that CZE inhibited ATP-induced caspase-1 cleavage and IL-1β maturation. To investigate whether CZE inhibits the priming step of the NLRP3 inflammasome, we confirmed the role of CZE at the gene level using RT-qPCR. CZE also downregulated the gene expression of NLRP3 and pro-IL-1β as well as NF-κB activation in BMDMs in response to LPS. Apoptosis associated speck-like protein containing a caspase-recruitment domain (CARD) oligomerization and speck formation by NLRP3 inflammasome activators were suppressed by CZE. By contrast, CZE did not affect NLR family CARD domain containing protein 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome activation in response to Salmonella typhimurium and poly(dA:dT) in LPS-primed BMDMs, respectively. The results revealed that three key components of CZE, namely linarin, 3,5-dicaffeoylquinic acid and chlorogenic acid, decreased IL-1β secretion in response to ATP, nigericin and MSU. These findings suggest that CZE effectively inhibited activation of the NLRP3 inflammasome.

  • PDF