• Title/Summary/Keyword: Earthquake intensity

Search Result 299, Processing Time 0.013 seconds

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

Dynamic Behavior Analysis of Bridges under the Combined Effect of Earthquake and Scour (지진 및 기초의 세굴을 고려한 교량시스템의 동적거동분석)

  • 김상효;최성욱;이상우;김호상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.187-194
    • /
    • 2002
  • Bridge dynamic behaviors and the failure of the foundation are examined in this study under seismic excitations including the local scour effect. The simplified mechanical model, which can consider the effect of various influence elements, is proposed to simulate the bridge motions. The scour depths around the foundations are estimated by the CSU equation recommended by the HEC-18 and the local scour effect upon global bridge motions is then considered by applying various foundation stiffness based upon the reduced embedded depths. From the simulation results, it is found that seismic responses of a bridge with the same scour depth for both foundations increase due to the local scour effect. The bridge scour is found to be significant under weak and moderate seismic intensity. The recovery durations of the foundation stiffness after local scour are found to be critical in the estimation of the probability of foundation failure under earthquakes. Therefore, the safety of the whole bridge system should be conducted with the consideration of the scour effect upon the foundations and the recovery duration of stiffness should be determined rationally.

  • PDF

Analytical fragility curves for typical Algerian reinforced concrete bridge piers

  • Kibboua, Abderrahmane;Naili, Mounir;Benouar, Djillali;Kehila, Fouad
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.411-425
    • /
    • 2011
  • This paper illustrates the results of a seismic vulnerability study aimed to derive the fragility curves for typical Algerian reinforced concrete bridge piers using an analytical approach. Fragility curves express the probability of exceeding a certain damage state for a given ground motion intensity (e.g., PGA). In this respect, a set of 41 worldwide accelerometer records from which, 21 Algerian strong motion records are included, have been used in a non-linear dynamic response analyses to assess the damage indices expressed in terms of the bridge displacement ductility, the ultimate ductility, the cyclic loading factor and the cumulative energy ductility. Combining the damage indices defined for 5 damage rank with the ground motion indices, the fragility curves for the bridge piers were derived assuming a lognormal distribution.

Seismic Scenario Simulation and Its Applications on Risk Management in Taiwan

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 2009.02b
    • /
    • pp.13-24
    • /
    • 2009
  • This paper introduces various kinds of applications of the scenario-based seismic risk assessment in Taiwan. Seismic scenario simulation (SSS) is a GIS-based technique to assess distribution of ground shaking intensity, soil liquefaction probability, building damages and associated casualties, interruption of lifeline systems, economic losses, etc. given source parameters of an earthquake. The SSS may integrate with rapid earthquake information release system to obtain valuable information and to assist in decision-making processes to dispatch rescue and medical resources efficiently. The SSS may also integrate with probabilistic seismic hazard analysis to evaluate various kinds of risk estimates, such as average annual loss and probable maximum loss in one event, in a probabilistic sense and to help proposing feasible countermeasures.

  • PDF

Numerical simulation of shaking table tests on 3D reinforced concrete structures

  • Bayhan, Beyhan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.151-171
    • /
    • 2013
  • The current paper presents the numerical blind prediction of nonlinear seismic response of two full-scale, three dimensional, one-story reinforced concrete structures subjected to bidirectional earthquake simulations on shaking table. Simulations were carried out at the laboratories of LNEC (Laboratorio Nacional de Engenharia Civil) in Lisbon, Portugal. The study was motivated by participation in the blind prediction contest of shaking table tests, organized by the challenge committee of the 15th World Conference on Earthquake Engineering. The test specimens, geometrically identical, designed for low and high ductility levels, were subjected to subsequent earthquake motions of increasing intensity. Three dimensional nonlinear analytical models were implemented and subjected to the input base motions. Reasonably accurate reproduction of the measured displacement response was obtained through appropriate modeling. The goodness of fit between analytical and measured results depended on the details of the analytical models.

Seismic Reliability Evaluation of Electric Power Transmission Systems in Low and Moderate Seismicity Regions (중약진 지역에서의 전력송전시스템의 지진재해 신뢰성 평가)

  • 고현무;김영호;박원석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.155-162
    • /
    • 2002
  • A technique for the seismic reliability evaluation of electric power transmission systems(EPTS) adapted to ground motion characteristics of Korea has been developed to evaluate reliability indices corresponding to the whole system and to each node within. A network model with nodes and links for EPTS has been established, and a seismic substation-fragility curve obtained from seismic fragilities of power system facilities has been derived. A point source model, the doubly truncated Gutenberg-Richter relationship, and earthquake intensity attenuation formula have been applied to simulate seismic events. Using Monte-Carlo simulation method, the seismic reliability of EPTS is evaluated and, it appeared that seismic effect on EPTS in low and moderate seismicity regions has to be considered.

  • PDF

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

Dynamic Analysis of Multi-Span Continuous Bridges under Combined Effects of Earthquake and Local Scour (지진과 세굴의 복합적인 영향을 받는 연속교의 동적거동분석)

  • 김상효;마호성;이상우;심정욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.166-173
    • /
    • 2002
  • Seismic bridge failure due to the combined effects of earthquake and local scour are examined in probabilistic perspectives. The seismic responses of multi-span continuous bridge with deep foundations are evaluated with a simplified mechanical model. The probabilistic local scour depths around the deep foundations are estimated by using the Monte Carlo simulation. From the simulation results, it is found that seismic responses of a bridge slightly increase due to the local scour effect. The effect of local scour on the global motion of the continuous bridge is found to be significant under weak seismic intensity. In addition, the duration to regain its original foundation stiffness is critical in estimating the probability of foundation failure under earthquake. Therefore, the duration in recovering the foundation stiffness should be determined reasonably and the safely of the whole bridge system should be evaluated by considering the scour effect.

  • PDF