• Title/Summary/Keyword: Earthquake intensity

Search Result 300, Processing Time 0.022 seconds

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Estmation of Magnitude of Historical Earthquakes Considering Earthquake Characteristics and Aging of a House (지진특성 및 가옥의 노후도를 고려한 역사지진의 지진규모 추정)

  • 서정문;최인길
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • The magnitudes of historical earthquake records related with house collapses are estimated considering the magnitude, epicentral distance, soil condition and aging of a house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km-350 km and hard and soft soil condition were generated. Nonlinear dynamic analyses were performed for a traditional three-bay-straw-roof house. The aging effect of the house was modeled as such that the lateral loading capacity of wooden frames represented by hysteretic stiffness was decreased linearly with time. The house was idealized by one degree-of-freedom lumped mass model and the nonlinear characteristics of wooden frames were modeled by the Modified Double-Target mode. For far field earthquakes, minor damages were identified regardless of magnitude, soil condition and aging of the house. For intermediate field earthquake, earthquake magnitude greater than 6.5 caused severe damages in soil sites. For near field earthquake, severe damages occurred for magnitude greater than 6.5 regardless of soil condition and aging of the house. It is estimated that the magnitude of historical earthquakes is about 6.2. An empirical equation of magnitude-intensity relationship suitable to Korea is suggested.

  • PDF

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

Seismic vulnerability assessment of existing private RC constructions in northern Algeria

  • Belhamdi, Nourredine;Kibboua, Abderrahmane;Tahakourt, Abdelkader
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • The RC private constructions represent a large part of the housing stock in the north part of Algeria. For various reasons, they are mostly built without any seismic considerations and their seismic vulnerability remains unknown for different levels of seismic intensity possible in the region. To support future seismic risk mitigation efforts in northern Algeria, this document assesses the seismic vulnerability of typical private RC constructions built after the Boumerdes earthquake (May 21, 2003) without considering existing seismic regulation, through the development of analytical fragility curves. The fragility curves are developed for four representative RC frames in terms of slight, moderate, extensive, and complete damage states suggested in HAZUS-MH 2.1, using nonlinear time history analyses. The numerical simulation of the nonlinear seismic response of the structures is performed using the SeismoStruct software. An original intensity measure (IM) is proposed and used in this study. It is the zone acceleration coefficient "A", through which the seismic hazard level is represented in the Algerian Seismic Regulations. The efficiency, practicality, and proficiency of the choice of IM are demonstrated. Incremental dynamic analyses are conducted under fifteen ground motion accelerograms compatible with the elastic target spectrum of the Algerian Seismic Regulations. In order to cover all the seismic zones of northern Algeria, the accelerograms are scaled from 0.1 to 2.5 in increments of 0.1. The results mainly indicate that private constructions built after the Boumerdes earthquake in the moderate and high seismic zones with four (04) or more storeys are highly vulnerable.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Evaluation of optimal ground motion intensity measures of high-speed railway train running safety on bridges during earthquakes

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Feng, Yulin;Lai, Zhipeng;Sun, Xiaoyun
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • Due to the large number of railway bridges along China's high-speed railway (HSR) lines, which cover a wide area with many lines crossing the seismic zone, the possibility of a HSR train running over a bridge when an earthquake occurs is relatively high. Since the safety performance of the train will be threatened, it is necessary to study the safety of trains running over HSR bridges during earthquakes. However, ground motion (GM) is highly random and selecting the appropriate ground-motion intensity measures (IMs) for train running safety analysis is not trivial. To deal this problem, a model of a coupled train-bridge system under seismic excitation was established and 104 GM samples were selected to evaluate the correlation between 16 different IMs and train running safety over HSR bridges during earthquakes. The results show that spectral velocity (SvT1) and displacement (SdT1) at the fundamental period of the structure have good correlation with train running safety for medium-and long-period HSR bridges, and velocity spectrum intensity (VSI) and Housner intensity (HI) have good correlation for a wide range of structural periods. Overall, VSI and HI are the optimal IMs for safety analysis of trains running over HSR bridges during earthquakes. Finally, based on VSI and HI, the IM thresholds of an HSR bridge at different speed were analyzed.

Analysis of Dynamic Earth Pressure Based on Zero Extension Line Theory (영팽창선이론(零膨脹線理論)에 의한 동적토압해석(動的土壓解析))

  • Shin, Dong Hoon;Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The present study was made based on the zero extension line theory and the well-known Mononobe-Okabe's to determine the dynamic earth pressures acting on the retaining walls. The zero extension line theory, which was proposed by Roscoe et al., assumes the coincidence between the loci of failure and the zero extension lines in soil mass. ln order to compute the dynamic earth pressure developed by an earthquake, it was assumed that for the vertical retaining walls with no surcharge, the backfill materials are dense and cohesionless sandy soils, there are no changes in soil parameters during earthquake, and the horizontal earthquake intensity is considered. The effects of horizontal earthquake intensity, internal friction angle of soil, wall friction angle and dilation angle, on the earth pressure coefficients were analysed. Final1y, the presented theories were successfully compared with the Mononobe-Okabe's as well.

  • PDF

Development of Seismic Monitoring System for Natural Gas Governor Station and It's Field Application to Minimize Earthquake Damage (지진 피해 최소화를 위한 지진 감지 시스템 개발 및 현장적용 연구)

  • Yoo H.R.;Park S.S.;Park D.J.;Koo S.J.;Cho S.H.;Rho Y.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.19-25
    • /
    • 2000
  • In order to prevent secondary disaster such as gas explosion which comes after a devastating magnitude earthquake, the seismic monitoring and transmission system for natural gas governor station was developed. To measure ground motions precisely and operate the seismic monitoring system efficiently, the position and method of accelerometer installation were recommended by the analysis of ground noise patterns of governor station. For making a decision on prompt shut-off of gas supplies in the event of a great earthquake, the real-time calculation algorithm of PGA(Peak Ground Acceleration) and SI(Spectrum Intensity) were developed and it has been implemented in the seismic monitoring and transmission system.

  • PDF