• Title/Summary/Keyword: Earthquake behavior

Search Result 1,453, Processing Time 0.024 seconds

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

An Experimental Study on the Structural Behavior of Steel Grid Shear Wall subjected to Axial Force and Cyclic Lateral Load (축력과 반복수평력을 받는 격자강판 내진보강벽의 구조거동에 관한 실험적 연구)

  • Park, Jung Woo;Sim, Ki Chul;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.525-532
    • /
    • 2012
  • The recently constructed buildings are ensuring seismic safety with enhanced design criteria. But, the buildings unapplied enhanced design criteria are very weak. In this study, steel grid shear wall is proposed as a solution of seismic retrofit to ensure safety of the existing buildings for the earthquake. And the structural performance experiments were carried out under axial force and cyclic lateral loads. The two specimens were made of a reference RC frame and steel grid shear wall in-filled RC frame. The test setup configured with two dynamic actuators, for the axial force with a 500kN capacity actuator and for the cyclic lateral load applied with the 2,000kN actuator. Compared with control specimen, the strength, stiffness, ductility, energy dissipation capacity of the seismic retrofit structures is evaluated.

Study of Structural Design Method of Friction Pendulum System for Fail Safe of a Sky-Bridge (스카이브릿지의 안전성확보를 위한 FPS 설계방법에 대한 연구)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3502-3507
    • /
    • 2013
  • If a sky-bridge is rigidly connected to adjacent buildings, the irregularity of the connected structures is increased resulting in providing a worse seismic behavior. Therefore, a friction pendulum system (FPS) or lead rubber bearing (LRB) is frequently used for the connection system between a sky-bridge and building structures. These connection systems should be carefully designed to prevent a skyfall of a sky-bridge subjected to severe seismic loads. In this paper, the inevitable structural design procedures for a sky-bridge connection system using a friction pendulum system without uplift resistance capacity have been investigated. To this end, Nuri Dream Square building structure is used as a example structure. The structural design process of a friction pendulum system for fail safe of a sky-bridge has been proposed in this paper by evaluating structural responses of the sky-bridge and building structures subjected to earthquake loads.

Three Dimensional Responses of Middle Rise Steel Building under Blast Loads (폭발하중을 받는 강구조 중층 건물의 응답 및 해석)

  • Hwang, Young-Seo;Lee, Wan-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.629-636
    • /
    • 2011
  • It has been suggested that buildings designed for strong ground motions will also have improved resistance to air blast loads. As an initial attempt to quantify this behavior, the responses of a ten story steel building, designed for the 1994 building code, with lateral resistance provided by perimeter moment frames, is considered. An analytical model of the building is developed and the magnitude and distribution of blast loads on the structure are estimated using available computer software that is based on empirical methods. To obtain the relationship between pressure, time duration, and standoff distance, these programs are used to obtain an accurate model of the air blast loading. A hemispherical surface burst for various explosive weights and standoff distances is considered for generating the air blast loading and determining the structural response. Linear and nonlinear analyses are conducted for these loadings. Air blast demands on the structure are compared to current seismic guidelines. These studies present the displacement responses, story drifts, demand/capacity ratio and inelastic demands for this structure.

Comparison between uniform deformation method and Genetic Algorithm for optimizing mechanical properties of dampers

  • Mohammadi, Reza Karami;Mirjalaly, Maryam;Mirtaheri, Masoud;Nazeryan, Meissam
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Seismic retrofitting of existing buildings and design of earth-quake resistant buildings are important issues associated with earthquake-prone zones. Use of metallic-yielding dampers as an energy dissipation system is an acceptable method for controlling damages in structures and improving their seismic performance. In this study, the optimal distribution of dampers for reducing the seismic response of steel frames with multi-degrees freedom is presented utilizing the uniform distribution of deformations. This has been done in a way that, the final configuration of dampers in the frames lead to minimum weight while satisfying the performance criteria. It is shown that such a structure has an optimum seismic performance, in which the maximum structure capacity is used. Then the genetic algorithm which is an evolutionary optimization method is used for optimal arrangement of the steel dampers in the structure. In continuation for specifying the optimal accurate response, the local search algorithm based on the gradient concept has been selected. In this research the introduced optimization methods are used for optimal retrofitting in the moment-resisting frame with inelastic behavior and initial weakness in design. Ultimately the optimal configuration of dampers over the height of building specified and by comparing the results of the uniform deformation method with those of the genetic algorithm, the validity of the uniform deformation method in terms of accuracy, Time Speed Optimization and the simplicity of the theory have been proven.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Evaluation of Dynamic Rock Stiffness Using In-hole Seismic Technique (인홀 탄성파 시험을 이용한 암반의 동적 강성 평가)

  • Sun Chang-Guk;Kang Byung-Soo;Kim Young-Su;Mok Young-Jin
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.309-323
    • /
    • 2005
  • Dynamic stiffness of subsurface materials is one of the most important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various borehole seismic testing techniques have been, thus, developed and used during past several decades. Moreover, recent rush of underground-space projects and increasing size of structures put more stress on reliable site investigation techniques in estimating stiffness of rock mass. In this paper, a new technique called 'in-hole seismic test' has been implemented to measure the dynamic stiffness of rock masses at subsurface foundations and tunnel-faces. The reliance of in-hole seismic test was evaluated by comparing the testing results at several rock sites with those of other borehole techniques and the technique tunnls out to be an efficient and accurate in-situ testing technique.

A Study on Psychological Behavior at Fire and Earthquake Evacuation using the Facet Theory (Facet 이론을 이용한 화재 및 지진발생시 행동심리에 관한 연구)

  • Kwon, Jin-Suk;Park, Jun;Choi, Jae-Hyouk;Kim, Soo-In
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.167-167
    • /
    • 2011
  • 최근 사회기반 시설물들의 대형화, 고밀도화가 됨에 따라 재해 재난대비에 대한 관심 또한 높아지고 있다. 특히, 화재는 우리 주변에서 지속적으로 발생하는 재난이다. 한편, 지진과 같은 경우에는 중소규모가 한반도내에서 빈번하게 발생하고 있지만 직접적으로 피해를 경험 한 적이 없어, 적극적으로 대비해야하는 재해로는 아직 인식하고 있지 못한다고 할 수 있다. 재난, 재해에 대한 연구는 과거의 피해를 기준으로 미래에 대한 대책을 해결책으로 제시하는 방식으로 많은 연구자들에 의해서 지속적으로 이루어지고 있다. 본 연구에서는 우리사회에 발생 가능한 재난에 대해서 서로 다른 인식 수준을 가지고 있는 지진과 화재의 재난에 대한 시민인식차이를 실증적으로 검토하였다. 화재 및 지진에 대한 설문조사를 실시하고 결과 분석을 통해 나타나는 재난시의 인간행동심리를 Facet이론을 이용하여 범위를 선정하고 분석하였다. 분석방법으로는 통합적 분석 방법으로 각 연령대별로 분류하여 분석하였다. 연령대별로 습득한 지식 및 교육환경 배경이 차이가 있을 것이라는 가정 아래 연령대별 분류를 하였다. 설문조사결과를 바탕으로 Facet이론에 근거하여 분석한 결과, 화재발생시의 통합적 분석의 경우는 [MATTER], [SPACE], [ENERGY]등이 다수 나타났고 지진 발생 시에는 통합적으로 [SPACE], [ENERGY]가 다수 나타났다. 따라서, 지진에 대한 국가적으로 교육시스템을 갖추고 개인적인 지진발생시 행동상황을 숙지하고 연습하는 것이 필요한 것으로 나타났다. 결론적으로 지진과 화재시의 인간행동심리를 비교한 결과, 화재는 우리나라에서 가장 빈번하게 발생하는 재해이기 때문에 비교적 국가적으로나 개인적으로 대비를 하고 있다는 것을 실증적으로 나타내었다. 화재로 인한 재난은 국가적으로 끊임없이 교육(인식전환)을 실시하고 있음에도 불구하고 지속적으로 발생하고 있다. 하지만 지진과 비교해 인위적 과실로 인한 재난임에도 불구하고 사전에 화재발생시 대처하는 행동숙지로 인해 많은 인적 및 재산적 피해를 줄일 수 있다. 최근 우리나라는 지진에 대해서는 건축물의 붕괴로 인한 피해방지에 중점을 두고 건축물의 내진성능에 대한 평가가 점진적으로 추진되고 있다. 하지만, 지진발생시 이와 같은 현재 방재정책과 더불어 국민 스스로 지진에 대한 발생가능성 및 예상위험에 대한 인식수준을 향상시킴으로서 국가적 재난을 효과적으로 대처할 필요가 있음을 실증적으로 나타내었다.

  • PDF

Assessing the effect of inherent nonlinearities in the analysis and design of a low-rise base isolated steel building

  • Varnavaa, Varnavas;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.499-526
    • /
    • 2013
  • Seismic isolation is an effective method for the protection of buildings and their contents during strong earthquakes. This research work aims to assess the appropriateness of the linear and nonlinear models that can be used in the analysis of typical low-rise base isolated steel buildings, taking into account the inherent nonlinearities of the isolation system as well as the potential nonlinearities of the superstructure in case of strong ground motions. The accuracy of the linearization of the isolator properties according to Eurocode 8 is evaluated comparatively with the corresponding response that can be obtained through the nonlinear hysteretic Bouc-Wen constitutive model. The suitability of the linearized model in the determination of the size of the required seismic gap is assessed, under various earthquake intensities, considering relevant methods that are provided by building codes. Furthermore, the validity of the common assumption of elastic behavior for the superstructure is explored and the alteration of the structural response due to the inelastic deformations of the superstructure as a consequence of potential collision to the restraining moat wall is studied. The usage of a nonlinear model for the isolation system is found to be necessary in order to achieve a sufficiently accurate assessment of the structural response and a reliable estimation of the required width of the provided seismic gap. Moreover, the simulations reveal that the superstructure's inelasticity should be taken into account, especially if the response of the structure under high magnitude earthquakes is investigated. The consideration of the inelasticity of the superstructure is also recommended in studies of structural collision of seismically isolated structures to the surrounding moat wall, since it affects the response.

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.