• Title/Summary/Keyword: Earthquake and

Search Result 6,232, Processing Time 0.134 seconds

Evidences of Soil-Forming Processes and Groundwater Movement Obscuring Sedimentary Structures: A Trench Profile in Yongjang-li, Gyeongju, South Korea (퇴적 구조 관찰 시 유념해야 할 토양화 및 지하수 유동 흔적: 경주 용장리 트렌치 단면의 예)

  • Yoon, Soh-joung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • In 2017, Korea Institute of Geoscience and Mineral Resources (KIGAM) has excavated a trench at Yongjang-li in the city of Gyeongju to examine the evidence of fault movement related with the 2016 earthquake in unconsolidated sediments. In the trench profile, the author has observed the features of ongoing soil-forming processes and groundwater movement overlapped on the sedimentary layers. The soil formation was in its initial stage, and most of the original sedimentary layers could be observed. The color changes depending on the redox conditions and by the Mn/Fe oxide precipitation, however, were the most significant features obscuring sedimentary records. The dark Mn oxide precipitates formed at the groundwater levels often concealed the sedimentary unit boundaries. The groundwater levels varied depending on the particle sizes of the sedimentary layers contacting the groundwater, and the Mn oxide precipitates have formed at varying depths. The groundwater could move upward along the narrow pores in the fine-textured sedimentary layer more than a few meters showing the gray color indicating a reducing condition for iron.

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification (한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성)

  • Jung, Hee-Ok;Kim, Hyoung-Jun;Jo, Bong-Gon;Park, Nam-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.541-554
    • /
    • 2010
  • Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

3D SH-wave Velocity Structure of East Asia using Love-Wave Tomography and Implication on Radial Anisotropy (러브파 토모그래피를 이용한 동아시아의 3차원 SH파 속도구조와 이방성 연구)

  • Min, Kyungmin;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • We present a 3D SH-wave velocity model of the crust and uppermost mantle and seismic radial anisotropy beneath East Asia. The SH-wave velocity structure model was built using Love-wave group-velocity dispersion data from earthquake data recorded at broadband seismic networks of Korea, Japan, and China. Love-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range of 3 to 150 s for 3,369 event-station pairs. The inverted model using these data sets provides a crust and upper mantle SH-wave velocity structure down to 100 km depth. At 10 ~ 40 km depths SH-wave velocity beneath the East Sea is higher than beneath the Japanese island region. We estimated the Moho beneath the East Sea to be between 10 ~ 20 km depth, while Moho beneath the Korean Peninsula at around 35 km based on the depth where high-velocity anomalies are detected. We estimated the lithosphere-asthenosphere boundary beneath the East Sea to be at around 50 km based on the depth where strong low-velocity anomalies are observed. Widespread low-velocity anomalies are found between 50 ~ 100 km depth in the study region. Positive radial anisotropy ($V_{SV}$ > $V _{SH}$) is observed down to 35 km depth, while negative radial anisotropy ($V_{SV}$ > $V _{SH}$) is observed for deeper depth.

Data-driven event detection method for efficient management and recovery of water distribution system man-made disasters (상수도관망 재난관리 및 복구를 위한 데이터기반 이상탐지 방법론 개발)

  • Jung, Donghwi;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.703-711
    • /
    • 2018
  • Water distribution system (WDS) pipe bursts are caused from excessive pressure, pipe aging, and ground shift from temperature change and earthquake. Prompt detection of and response to the failure event help prevent large-scale service interruption and catastrophic sinkhole generation. To that end, this study proposes a improved Western Electric Company (WECO) method to improve the detection effectiveness and efficiency of the original WECO method. The original WECO method is an univariate Statistical Process Control (SPC) technique used for identifying any non-random patterns in system output data. The improved WECO method multiples a threshold modifier (w) to each threshold of WECO sub-rules in order to control the sensitivity of anomaly detection in a water distribution network of interest. The Austin network was used to demonstrated the proposed method in which normal random and abnormal pipe flow data were generated. The best w value was identified from a sensitivity analysis, and the impact of measurement frequency (dt = 5, 10, 15 min etc.) was also investigated. The proposed method was compared to the original WECO method with respect to detection probability, false alarm rate, and averaged detection time. Finally, this study provides a set of guidelines on the use of the WECO method for real-life WDS pipe burst detection.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground(Part I: External Stability of the Improved Soil System) (심층혼합처리지반에 설치된 안벽의 신뢰성해석(Part I: 개량지반의 외부안정))

  • Huh, Jung-Won;Park, Ock-Joo;Kim, Young-Sang;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.79-87
    • /
    • 2010
  • This is the first of the two papers dealing with reliability analyses for external and internal stability of a quay wall constructed on a special foundation. A new practical reliability analysis method is proposed in this paper to evaluate the quantitative risk associated with external stability of a quay wall constructed on the deep cement mixed ground. The method can consider uncertainties in various design variables. For the risk estimation to external stability of the improved soil-quay wall, three corresponding limit state functions of sliding, overturning and bearing capacity are fully defined by introducing concept of the secondary random variable. Three representative reliability methods, MVFOSM, FORM and MCS are then applied to evaluate the failure probabilities of the three limit state functions explicitly expressed in terms of the basic and secondary random variables. From the reliability analysis results, the failure probabilities obtained from the three approaches are very close to each other, and the sliding failure mode appears to be the most critical when the earthquake loading is under consideration.

A Study on the Problem of Application of Seismic Performance Reinforcement Method for Urban Railways Case of Fiber and Rigid Reinforcement (섬유 및 강성 보강재료 기반 도시철도 내진성능 보강공법적용의 문제점 연구)

  • Ha, Kyoung Hwa;Park, Jae Yil;Kang, Hwi Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2020
  • In 2005, Urban railway seismic design was introduced in Rep. Of Korea, and many studies on seismic performance evaluation and reinforcement methods were conducted. In accordance with the Enforcement Decree of the Earthquake Disaster Countermeasures Act issued in March 2009, during April 2010 to October 2013, some of local governments established detailed evaluation and reinforcement measures for seismic performance of the urban railway underground structure. Afterwards, the seismic performance reinforcement of the existing urban railway structures was conducted for the sections that a long period of used until the end of 2018, and the reinforcement works are carried out by various methods using the previously studied methods. However, various reinforcing materials and construction methods using have been studied, but the classification research on the construction methods currently applied to reinforcement construction of urban railways is insufficient. The purpose of study is to analysis the cases currently applied to seismic reinforcement construction and to show the characteristics of each construction method, the reasons for its application and problems.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Study on the Sea Level Pressure Prediction of Typhoon Period in South Coast of the Korean Peninsula Using the Neural Networks (신경망 모형을 이용한 태풍시기의 남해안 기압예측 연구)

  • Park, Jong-Kil;Kim, Byung-Soo;Jung, Woo-Sik;Seo, Jang-Won;Shon, Yong-Hee;Lee, Dae-Geun;Kim, Eun-Byul
    • Atmosphere
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2006
  • The purpose of this study is to develop the statistical model to predict sea level pressure of typhoon period in south coast of the Korean Peninsula. Seven typhoons, which struck south coast of the Korean Peninsula, are selected for this study, and the data for analysis include the central pressure and location of typhoon, and sea level pressure and location of 19 observing site. Models employed in this study are the first order regression, the second order regression and the neural network. The dependent variable of each model is a 3-hr interval sea level pressure at each station. The cause variables are the central pressure of typhoon, distance between typhoon center and observing site, and sea level pressure of 3 hrs before, whereas the indicative variable reveals whether it is before or after typhoon passing. The data are classified into two groups - one is the full data obtained during typhoon period and the other is the data that sea level pressure is less than 1000 hPa. The stepwise selection method is used in the regression model while the node number is selected in the neural network by the Schwarz's Bayesian Criterion. The performance of each model is compared in terms of the root-mean square error. It turns out that the neural network shows better performance than other models, and the case using the full data produces similar or better results than the case using the other data.