• 제목/요약/키워드: Earthquake Excitation

검색결과 379건 처리시간 0.021초

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

Effect of viscous dampers on yielding mechanisms of RC structures during earthquake

  • Hejazi, Farzad;Shoaei, Mohammad Dalili;Jaafar, Mohd Saleh;Rashid, Raizal Saiful Bin Muhammad
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1499-1528
    • /
    • 2015
  • The yielding mechanisms of reinforced concrete (RC) structures are the main cause of the collapse of RC buildings during earthquake excitation. Nowadays, the application of earthquake energy dissipation devices, such as viscous dampers (VDs), is being widely considered to protect RC structures which are designed to withstand severe seismic loads. However, the effect of VDs on the formation of plastic hinges and the yielding criteria of RC members has not been investigated extensively, due to the lack of an analytical model and a numerical means to evaluate the seismic response of structures. Therefore, this paper offers a comprehensive investigation of how damper devices influence the yielding mechanisms of RC buildings subjected to seismic excitation. For this purpose, adapting the Newmark method, a finite element algorithm was developed for the nonlinear dynamic analysis of reinforced concrete buildings equipped with VDs that are subjected to earthquake. A special finite element computer program was codified based on the developed algorithm. Finally, a parametric study was conducted for a three-story RC building equipped with supplementary VD devices, performing a nonlinear analysis in order to evaluate its effect on seismic damage and on the response of the structure. The results of this study showed that implementing VDs substantially changes the mechanism and formation of plastic hinges in RC buildings.

Seismic response of utility tunnels subjected to different earthquake excitations

  • Wang, Chenglong;Ding, Xuanming;Chen, Zhixiong;Feng, Li;Han, Liang
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.67-79
    • /
    • 2021
  • The influence of ground motions on the seismic response of utility tunnels was investigated. A series of small-scale shaking table model tests were carried out under uniform excitation in the transverse direction. Different peak accelerations of EL-Centro and Taft earthquake waves were applied. The acceleration responses, earth pressure, seismic strain, bending moment and structure deformations were measured and discussed. The results showed that the types of earthquake waves had significant influences on the soil-structure acceleration responses. However, the amplitude of the soil acceleration along the depth showed consistent variation regardless of the types of earthquake waves and tunnels. The horizontal soil pressure near the top and bottom slabs showed obviously larger values than those at other depths. In general, the strain response in the outer surface was more significant than that on the inner surface, and the peak strain in the end section of the model was larger than that in the middle section. Moreover, the bending moment at the corner points was much larger than that at middle point, and the bending moment was greatly affected by both input accelerations and seismic wave types. The opposite direction of shear deformation on the top and bottom slabs presented a rotation trend of the model structure.

대형강구조물의 지진손상도 해석 (Seismic Damage Analysis of Large Steel Structures)

  • 송종걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.199-206
    • /
    • 1997
  • Under sever earthquake, structural elements or structures may sustain a large number of inelastic excursions. To predict seismic damage of the structures with accuracy, much research for general definition of structural collapse and seismic damage analysis is required. The ductility method, the energy method and Park and Ang method for seismic damage analysis of structural elements and structures are compared in this paper. Also, the seismic damage analysis for system-level of structure is carried out using the ESDOF-system method and Powell method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

실물크기 점탄성 감쇠기의 동적 특성 (Dynamic Characteristics of Full-Scale Viscoelastic Dampers)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.367-374
    • /
    • 1999
  • this paper focuses on the dynamic characteristics of full-scale viscoelastic dampers through the experimental study. Viscoelastic dampers which dissipate the response energy of a building under earthquake excitation make a role of increasing damping capacity of the building. Therefore it is important to recognize the damping behavior of viscoelastic dampers. Full-scale viscoelastic dampers are made of three types of rubbers for experimental test. The hysteretic behavior is obtained through the load-deformation experiment over the various loading frequencies and damper strains The experimental results show the good performance of viscoelastic dampers under earthquake excitations,

  • PDF

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용 (Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures)

  • 이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

지반 기진력을 받는 구조물의 진동 제어를 위한 Hybrid Mass Damper 의 유용성 연구 (A Study on the Adaptability of Hybrid Mass Damper for the Vibration Control of Structure under Base Excitation)

  • 임채욱;정태영;문석준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.268-275
    • /
    • 2000
  • A hybrid mass damper that combines a tuned mass damper and an actuator has been recognized to be one of the most promising devices for vibration control of a tall building subjected to dynamic loads such as wind and earthquake. In this paper, in order to reduce vibration levels of a 5-story test structure, a hybrid mass damper using AC-servomotor was designed and developed. And control performances using HMD and TMD under random and earthquake excitations are compared through experimental test. It is confirmed that it is more effective to reduce the vibration levels of the test structure using HMD especially for earthquake excitation.

  • PDF