• Title/Summary/Keyword: Earthquake Characteristics

Search Result 1,204, Processing Time 0.025 seconds

A Study on the Nonlinear Restoring Force Characteristics for Shear Wall Structures by JEAC 4601 (JEAC 4601에 의한 전단벽 구조물의 비선형 복원력 특성에 대한 고찰)

  • Lee, Won Hun;Kim, Hee Kyun;Song, Sung Bin;Hwang, Kee Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Structures of domestic nuclear power plants are designed to perform elastic behavior against beyond design earthquakes, but studies on the nonlinear behavior of structures have been insufficient since the beyond design earthquake. Accordingly, it is judged that it will be necessary to develop an evaluation method that considers the nonlinear behavioral characteristics to check the safety margin for a standard nuclear power plant structure. It is confirmed that the restoring force characteristics for each member level can be identified through the calculation formula, and the lateral stiffness for each story can also be easily calculated by JEAC 4601. In addition, as a result of applying the evaluation method of JEAC 4601 as a nonlinear restoring force model of the nuclear power plant, a certain degree of safety margin can be identified.

Earthquake Behavior Characteristics and Seismic Performance Evaluation of Phayathonzu Temple in Myanmar (미얀마 파야똔주 사원의 지진거동 특성 및 내진성능 평가)

  • Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Phayathonzu temple in Myanmar was made of masonry bricks, and so it was vulnerable to lateral load such as earthquake. Especially, it has many difficulties in structural modeling and dynamic analysis because the discontinuous characteristics of masonry structure should be considered. So, it is necessary to provide the seismic performance evaluation technology through the inelastic dynamic modeling and analysis under earthquake loads for the safety security of masonry brick temple. Therefore, this study analyzes the seismic behavior characteristics and evaluates the seismic performance for the 479 structure with many cracks and deformations. Through the evaluation results, we found out the structural weak parts on earthquake loads.

A Study on the Dynamic Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;정명채;이진섭;이갑수;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.151-158
    • /
    • 1999
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent very different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study the .earthquake response behavior is verified according to the factor of each shape, rise/span ratio, ana damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Attenuation of S-waves in the Gyungsang Basin: Results of 1997 ~2000 Earthquake Data Analysis (경상분지에서의 S파 감쇠 : 1997-2000 지진자료 분석결과)

  • 이정모;김태경;조봉곤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.52-56
    • /
    • 2001
  • In order to get information on more reliable S-wave attenuation characteristics in the Gyeongsang Basin, local earthquake data compiled during the period of years 1997~2000 are analyzed using spectral smoothing technique. Total 421 seismograms recorded at 12 local stations by 68 earthquakes of local magnitudes equal to or greater than 1.4 are examined. Among them, 155 records with good S/N ratio were analyzed. As results, statistically well constrained attenuation characteristics are fecund. Those are; (1) 0.000158362 < $x_{q}$-value (0.000196474) < 0.000234586, (2) 0.00657 < $x_{s}$-value (0.01061) < 0.01465, and (3) 1158 < Q-value (1383) < 1716, where the upper and low limits are values with 95% confidence level. We obtained remarkably well constrained $X_{s}$-value which has not been determined previously. The results can be used as input data far ground motion computations in earthquake engineering.ing.g.

  • PDF

Analysis of Seismic Response Characteristics for Wolsong Nuclear Power Plant Structures (월성원전 구조물의 지진응답 특성 분석)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.90-97
    • /
    • 1997
  • The purpose of this study is to evaluate the seismic response characteristics of Wolsong nuclear power plant (NPP) structures for the Kyeongju earthquake(ML=4.3) occurred on June 26, 1997. The seismograms are obtained from five accelerographs of nuclear power plant at Wolsong, Kyeongbuk. The distance from the epicenter is about 25km. The peak acceleration (PA) due to the earthquake is 0.0235g, which is far lower value than that of design basis earthquake(DBE). The PA at the containment wall is about twice as large as that at free field. Also, the higher the accelerograph is located in, the larger the PA is measured to be From the response spectrum analysis, the dominant frequency of the response is close to 4 Hz, which is similar to the free field is poor because of contamination by high frequency waves as a result of reflection and diffraction between ground and NPP structure. We are of opinion that the accelerograph at the free field should be moved approximately twice the building dimension away from the containment structure.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test (Hualien 대형내진모델시험의 지진응답 계측데이타 분석)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

Dynamic response of a fuel assembly for a KSNP design earthquake

  • Jhung, Myung Jo;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3353-3360
    • /
    • 2022
  • Using data from the design earthquake of the Korean standard nuclear power plant, seismic analyses of a fuel assembly are conducted in this study. The modal characteristics are used to develop an input deck for the seismic analysis. With a time history analysis, the responses of the fuel assembly in the event of an earthquake are obtained. In particular, the displacement, velocity, and acceleration responses at the center location of the fuel assembly are obtained in the time domain, with these outcomes then used for a detailed structural analysis of the fuel rods in the ensuing analyses. The response spectra are also generated to determine the response characteristics in the frequency domain. The structural integrity of the fuel assembly can be ensured through this type of time history analysis considering the input excitations of various earthquakes considered in the design.

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

A New Assessment of Liquefaction Potential Based on the Dynamic Test (진동시험에 기초한 액상화 상세예측법 개발)

  • Kim, Soo-Il;Choi, Jae-Soon;Kang, Han-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF