• Title/Summary/Keyword: Earthenware raw materials

Search Result 3, Processing Time 0.018 seconds

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology

  • Park, Joon-Hong;Kim, Jin-Ho;Cho, Woo-Seok;Han, Kyu-Sung;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.114-120
    • /
    • 2017
  • In underdeveloped countries, many people suffer from water shortage due to the absence of water supply service. Although water purifiers have provided support in such situations, it is not easy to maintain water filters without a continuous supply of consumable filters. To obtain a sustainable drinking water source, appropriate technology of water treatment is necessary. Herein, a low cost water purification system was developed using natural raw materials. A non-electric water treatment system was developed using filtration through an Onggi filter, which is a type of Korean traditional earthenware with a microporous surface. The porosity and flux of the prepared Onggi filter were 29.06% and 31.63 LMH, respectively. After purification of water with total dissolved solids of 10.4 mg/L and turbidity of 100 NTU, the total dissolved solids and turbidity of the water treated using the Onggi filter decreased by 12% and 99.8%, respectively.

An Analysis of Material Property on Eartherwares Excavated at Auraji site in Jeongseon (정선 아우라지 출토 토기의 재료과학적 특성 분석)

  • Lee, Byeong Hoon
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.545-556
    • /
    • 2021
  • In this study, we aimed to elucidate the materialistic characteristics of 11 pieces of earthenware belonging to the Neolithic and Bronze Age excavated from Jeongseon Auraji, South Korea. As a result, the chemical composition of earthenwares belonging to the early Bronze Age was distributed in the intermediate area between the Neolithic and Bronze Age earthenwares, but no significant difference was confirmed based on their manufacturing period. Upon comparison, the earthenwares excavated from Jeongseon Auraji site were found to comprise less acidic components than those excavated from Yeongdong, and are characterized by the alkaline components depending on the excavated site. In the rare earth elements distribution pattern, all the analyzed earthenwares exhibited similar pattern, confirming that the raw materials present in the clay were the same. As a result of microstructure analysis, the clay particles and voids were found to be irregularly distributed in the analyzed earthenwares. Neolithic earthenwares exhibited many irregular voids, and an arrangement of aluminosilicate, including feldspar, was observed along with the clay substrate. Furthermore, we confirmed that the empty space in early Bronze Age earthenwares was filled with fine particles and cube crystals. Moreover, the main mineral phase of earthenwares excavated from Jeongseon Auraji exhibited similar composition, and therefore, there was no significant difference in the firing temperature of these earthenwares. The firing temperature of the earthenwares ranged from 750 to 850℃.