• Title/Summary/Keyword: Earth-based perspective

Search Result 78, Processing Time 0.024 seconds

Exploring Effects of a Visual Material Driven by Earth-Based Perspectives on the Spatial Representation of 5th Graders (지구 기반 관점의 시각 자료가 초등학교 5학년 학생들의 공간 표상에 미치는 영향 탐색)

  • Hyoung-Jin Kim;Seong-Hwan Jeong;Myeong-Kyeong Shin;Nan-Joo Kwon;Gyu-ho Lee
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.151-164
    • /
    • 2022
  • The 2015 revised science curriculum textbook of 6th graders describes 'day and night' as an astronomical phenomenon observed on a daily basis. Textbooks use only visual materials from a space-based perspective to explain the causes of day and night. This study aims to investigate what changes in spatial representations of 5th graders when additional visual materials of the Earth-based perspective were presented to them. It also shows that the Space and the Earth-based perspectives appear to be interconnected. The following are found in this study. First, when students were presented with a visual material of an Earth-based perspective, their spatial representations of both the Earth and the Space-based perspectives changed. Second, the visual material of an Earth-based perspective confirmed the possibility that students' spatial representation types could be different in many ways. Third, the effect on the spatial representation of each perspective is different depending on gender and the level of spatial representation.

Day / Night Cycle Spatial Representation of Elementary Students of Urban and Rural Area from an Earth- and a Space-based Perspective (도심 지역 및 도서 지역 초등학생들의 낮과 밤에 대한 지구 기반 관점과 우주 기반 관점의 공간표상)

  • Shin, Myeong-Kyeong;Kim, Jong-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.309-322
    • /
    • 2018
  • There is no doubt that science -and, therefore, science education- is central to the lives of all (NGSS, 2013). This manuscript focuses on ideas in astronomy that are at the foundation of elementary students' understanding of the discipline: the apparent motion of the sun explaining the day / night cycle on Earth. According to prior research demonstrating that neither children nor adults hold a scientific understanding of the big ideas of astronomy (NRC, 1996), understanding of concepts may base students' progress towards more advanced understanding in the domain of astronomy. We have analyzed the logic of the domain and synthesized prior research assessing children's spatial representation from an earth- and a space based perspective to develop a set of learning trajectories that describe how students' initial ideas about apparent celestial motion as they take school science can be build upon. In this study elementary students' representations were compared by their resident context including urban and rural. This study may present a first look at the use of a learning progression framework in analyzing the structure of astronomy education. We discuss how this work may eventually lead towards the development and empirical testing of how children learn to describe and explain apparent patterns of celestial motion.

Visualization System for Earth Environmental Data Base

  • Ikoma, Eiji;Kitsuregawa, Masaru
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.280.1-285
    • /
    • 1998
  • The earth's environmental problems have attracted serious attention worldwide. Various kinds of environmental data, such as remote sensing data, have become available for examining. Although this data is crucial to understanding such problems, there has become an over-abundance in variety of size, format, and filetype which makes it difficult for researchers to handle. We feel that earth environmental researchers should not be burdened by such cumbersome tasks. Therefore, we are developing a digital library for earth environmental information and a VRML based data visualization system for it. Even now, content-based image retrieval systems have many problems attributed to the degree of difficulty in implementing them. Thus, we are trying to visualize this data so that researchers can utilize it more efficiently, effectively, and easily. A great advantage for VRML users is that people can see environmental data from any perspective above the earth and with any resolution easily. Also by using MPEG-movie, users can observe the changes of data drawn from time series files.

  • PDF

Analysis of Carbon Cycle Concepts based on Earth Systems Perspective of High School Students (고등학생들의 지구시스템 관점에 기반한 탄소 순환 개념 분석)

  • Lee, Doo-Yoen;Oh, EunSuk;Kim, Hyoungbum;Jeong, Jin-Woo
    • Journal of Science Education
    • /
    • v.37 no.1
    • /
    • pp.157-169
    • /
    • 2013
  • The purpose of this study is to analyze carbon cycle concepts based on earth systems from the perspective of high school students. The subjects for this study were seven students who have completed Earth-science I curriculum. to analyze of carbon cycle concepts based on earth systems perspective, the methods of word association, casual map and drawing were used. The results of this study were as follows: first, 5 out of 7 students have suggested carbon cycle concepts less than three. Second, the carbon cycle concepts on the change of state were 2. Also, the carbon cycle concets on process were 8. Third, 2 out of 7 students present 2 feedback loops, 3 out of 7 students 1 feedback loops, but 2 out of 7 students couldn't present the feedback loops associated with carbon cycle. Finally, As for carbon cycle concepts through drawing, 1 out of 7 students drew 9 concepts, 3 out of 9 students drew 7 concepts and the rest of them drew 5, 4, 3 concepts respectively. These results suggest that concept and feedback loop thinking skills on carbon cycle are a low level. Therefore, It is suggested that more educational programs be developed on various topics in order for high school students to improve their system thinking skills as well as knowledge integration of earth systems.

  • PDF

Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking (달의 위상 변화에 대한 초등학교 6학년 학생들의 학습 발달과정 탐색: 천문학적 시스템 사고를 중심으로)

  • Oh, Hyunseok;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.103-116
    • /
    • 2018
  • The purpose of this study was to explore $6^{th}$ graders learning progression for lunar phase change focusing astronomical systems thinking. By analyzing the results of previous studies, we developed the constructed-response items, set up the hypothetical learning progressions, and developed the item analysis framework based on the hypothetical learning progressions. Before and after the instruction on the lunar phase change, we collected test data using the constructed-response items. The results of the assessment were used to validate the hypothetical learning progression. Through this, we were able to explore the learning progression of the earth-moon system in a bottom-up. As a result of the study, elementary students seemed to have difficulty in the transformation between the earth-based perspective and the space-based perspective. In addition, based on the elementary school students' learning progression on lunar phase change, we concluded that the concept of the lunar phase change was a bit difficult for elementary students to learn in elementary science curriculum.

A Descriptive Study on Students' Talk During the Presentation of Their Science Projects

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.1
    • /
    • pp.26-40
    • /
    • 2005
  • Based on the Vygotskian perspective that a learner's thinking is constituted in his or her talk and the assumption that student talk in the classroom may occur in more than one way, this study examined discursive practices of students in Korean high school science classrooms. Data came from $11^{th}$ grade earth science classrooms where the Group Investigation (GI) method was implemented. Data source included verbatim transcripts developed from video recordings of class sessions in which students presented their science projects to the whole class and exchanged questions and answers during the presentations. The analysis of the videotape transcripts revealed five different modes of student talk, including 1) retrieving information, 2) reformulating information, 3) building on one's own experience, 4) elaborating current understanding, and 5) negotiating meanings with others. Considering that each of the five modes had different value for learning science, it was recommended that the teacher should engage students in more active modes of discourse and guide them into more sophisticated understanding of science.

Understanding the Estimation of Circumference of the Earth by of Eratosthenes based on the History of Science, For Earth Science Education

  • Oh, Jun-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.2
    • /
    • pp.214-225
    • /
    • 2017
  • The first accurate estimate of the Earth's circumference was made by the Hellenism scientist Eratosthenes (276-195 B.C.) in about 240 B.C. The simplicity and elegance of Eratosthenes' measurement of the circumference of the Earth by mathematics abstraction strategies were an excellent example of ancient Greek ingenuity. Eratosthenes's success was a triumph of logic and the scientific method, the method required that he assume that Sun was so far away that its light reached Earth along parallel lines. That assumption, however, should be supported by another set of measurements made by the ancient Hellenism, Aristarchus, namely, a rough measurement of the relative diameters and distances of the Sun and Moon. Eratosthenes formulated the simple proportional formula, by mathematic abstraction strategies based on perfect sphere and a simple mathematical rule as well as in the geometry in this world. The Earth must be a sphere by a logical and empirical argument of Aristotle, based on the Greek word symmetry including harmony and beauty of form. We discuss the justification of these three bold assumptions for mathematical abstraction of Eratosthenes's experiment for calculating the circumference of the Earth, and justifying all three assumptions from historical perspective for mathematics and science education. Also it is important that the simplicity about the measurement of the earth's circumstance at the history of science.

Development of a Lane Sensing Algorithm Using Vision Sensors (비전 센서를 이용한 차선 감지 알고리듬 개발)

  • Park, Yong-Jun;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1666-1671
    • /
    • 2002
  • A lane sensing algorithm using vision sensors is developed based on lane geometry models. The parameters of the lane geometry models are estimated by a Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from image plane to global coordinate assumes earth to be flat, but roll and pitch motions of a vehicle are considered from the perspective of the lane sensing. The proposed algorithm shows robust lane sensing performance compared to the conventional algorithms.

Analysis of Fieldtrip-related Perception and Attitudes of Science-talented Students: A Case of Winter School in Korea Earth Science Olympiad, 2007 (야외지질학습에 관한 과학영재학생들의 인식과 태도 분석: 2007년도 한국지구과학올림피아드 겨울학교 사례를 중심으로)

  • Ryu, Chun-Ryol
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.81-95
    • /
    • 2009
  • The purpose of this study wasto analyze the factors that enhance their learning achievement in a fieldtrip environment. For this academic goal, we analyzed a pattern of fieldtrip-related perception and attitudes of 19 science-talented students who participated in the 2007 KESO winter school. As for the perception type, the result of analysis showed that the science-talented students understood a fieldtrip as an experimental inquiry from an inquiry perspective, and that their understanding about a fieldtrip was based on anthropocentrism, positivism and instrumentalism from a science philosophy perspective. Regarding theattitudes type, the result revealed that the purpose of the winter school was mainly to learn knowledge in earth science, and that there was a significant tendency for the participating students to become a future scientist more eagerly than their parents expected. Students' fieldtrip-related academic self-concept was mostly positive while the participants experienced both positive and negative emotions.

Exploring Scientific Argumentation from Teacher-Student Interaction with Epistemological and Psychological Perspectives (교사-학생 상호작용간의 과학논증 탐색: 인식론 및 심리학적 관점으로)

  • Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.106-117
    • /
    • 2010
  • The purpose of this study was to explore students' argumentation in perspectives of epistemology and psychology and to find out how teacher can promote students' abilities of developing argumentation. The 60 hours of lessons from the interaction between one science teacher (Mr. Physics, who had 35 years of teaching experience) and his 26 students were observed, transcribed, and analyzed using two different analyzing tools; one is from the perspective of epistemology and the other from the perspective of psychology, which can portray how argumentation is constructed. Mr. Physics created the environment where students could promote the quality of scientific argumentation through explicit teaching strategy, Claim-Evidence Approach. The low level of argumentation was portrayed through examples from students' prior knowledge or experience in the form of an Appeal to the instance operation and the Elaboration reasoning skill. Students' own claims were developed through application of knowledge in a different context in the form of an Induction operation and Generativity reasoning skill. Higher level of argumentation was portrayed through Consistency operation with other knowledge or experience and Explanation reasoning skills based on students' ideas with more active teacher's inputs. The teacher in this study played a role as a helper for students to enact identities as competent "sense makers," as an elaborator rather than evaluator to extend students' ideas, and as a mentor to foster and monitor the students' development of ideas of a higher quality. It is critical for teachers to understand the nature of argumentation, which in turn is connected to their explicit teaching strategy with the aim of providing opportunities where students can understand the science enterprise.