• Title/Summary/Keyword: Earth parameter

Search Result 316, Processing Time 0.028 seconds

Time-lapse Inversion of 2D Resistivity Monitoring Data (2차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Ki-Ju;Cho, In-Ky;Jeoung, Jae-Hyeung
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.326-334
    • /
    • 2008
  • The resistivity method has been used to image the electrical properties of the subsurface. Especially, this method has become suitable for monitoring since data could be rapidly and automatically acquired. In this study, we developed a time-lapse inversion algorithm for the interpretation of resistivity monitoring data. The developed inversion algorithm imposes a big penalty on the model parameter with small change, while a minimal penalty on the model parameter with large change compared to the reference model. Through the numerical experiments, we can ensure that the time-lapse inversion result shows more accurate and focused image where model parameters have changed. Also, applying the timelapse inversion method to the leakage detection of an embankment dam, we can confirm that there are three major leakage zones, but they have not changed over time.

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

UBVI CCD Photometry of the Globular Cluster M30 (구상성단 M30의 UBVI CCD 측광연구)

  • Lee, Ho;Jeon, Young-Beom
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.557-568
    • /
    • 2006
  • We present CCD UBVI photometry for more than 10,000 stars in $20'.5{\times}20'.5$ field of the halo globular cluster M30. From a color-magnitude diagram, main sequence turnoff was obtained when $V_{TO},\;(B-V)_{TO},\;and\;(V-I)_{TO}\;are\;8.63{\pm}0.05,\;0.44{\pm}0.05\;and\;0.63{\pm}0.05$, respectively. From a (U-B)-(B-V) diagram, reddening parameter, E(B-V) equals $0.05{\pm}0.01$ and a UV color excess ${\delta}(U-B)\;is\;0.27{\pm}0.01$. The abundance is derived, where [Fe/H] equals $-2.05{\pm}0.09$ according to the photometric method and spectroscopic data. The observed luminosity function of M30 shows an excess in the number of red giants relative to the number of turnoff stars, when comparing with the predictions of canonical models. Using the Hipparcos parallaxes for subdwarfs, we estimate distance modulus, $(m-M)_o\;as\;14.75{\pm}0.12$. Using the R and R' method, we find helium abundances, Y(R) as $0.23{\pm}0.02$, Y(R') as $0.29{\pm}0.02$, respectively. Finally, the cluster' sage dispersion was deduced from 10.71 Gyr to 17 Gyr.

An Estimation of Probable Precipitation and an Analysis of Its Return Period and Distributions in Busan (부산지역 확률강수량 결정에 따른 재현기간 및 분포도 분석)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • In this study, a statistical estimation of probable precipitation and an analysis of its return period in Busan were performed using long-term precipitation data (1973-2007) collected from the Busan Regional Meteorological Administration. These analyses were based on the method of probability weighted moments for parameter estimation, the goodness-of-fit test of chi-square ($x^2$) and the probability plot correlation coefficient (PPCC), and the generalized logistics (GLO) for optimum probability distribution. Moreover, the spatial distributions with the determination of probable precipitation were also investigated using precipitation data observed at 15 Automatic Weather Stations (AWS) in the target area. The return periods for the probable precipitation of 245.2 and 280.6 mm/6 hr with GLO distributions in Busan were estimated to be about 100 and 200 years, respectively. In addition, the high probable precipitation for 1-, 3-, 6-, and 12-hour durations was mostly distributed around Dongrae-gu site, all coastal sites in Busan, Busanjin and Yangsan sites, and the southeastern coastal and Ungsang sites, respectively.

Total Management System for Earth Retaining Structures Using Observational Method (지반굴착 흙막이공의 정보화시공 종합관리 시스템)

  • 오정환;조철현;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.51-64
    • /
    • 2002
  • Observational results of ground movement during the construction were very different from those predicted during the analysis of design step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc., however accurately numerical analysis method was applied for prediction of ground movement per the excavation step. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until now, the measurement system restricted by 'Absolute Value Management system'analyzing only the stability of present step has been executed. So, it was difficult to expect the prediction of ground movement fur the next excavation step. In this situation, this study developed 'The Management system TOMAS-EXCAV'consisted of 'Absolute value management system'analyzing the stability of present step and 'Prediction management system'expecting the ground movement of next excavation step and analyzing the stability of next excavation step by 'Back Analysis'. TOMAS-EXCAV could be applied to all the uncertainty of earth retaining structures analysis by connecting 'Forward analysis program'and 'Back analysis program'and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The applicability of TOMAS-EXCAV was confirmed by back analysis selecting two earth retains construction fields.

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Analysis of Temperature Variations in Groundwater in the Taegu Area (지하수온도 자료분석에 의한 대구지역 지하수 특성 연구)

  • 성익환
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.267-278
    • /
    • 1993
  • Ground-water temperature is one of the parameters for observing diarges in the state of the ground-water regime in time and space, which relate to conditions for recharge as well as the influence of various natural and man-induced fadors on the regime. Because ground-water satura tes much of the rock materiats in the upper layer of the earth's csust the water temperature reflects in part the temperature of the water-bearing rocks. The mobffity and thennal capadty of groud-waters, however, serves to redistribute some of the heat within the stratosphere and to influence the developement of the geothermal regime within this sphere. The utilization of temperature data of the study area(25 points) in the solution of hydrogeologic problems requires an understanding of some of the fundamental aspects of subsurtice temperatures. These include the depth of penetration of heat waves generated of the surtace, the rate of propagation of the waves, and the geothermal gradient in the study area of Taegu.

  • PDF

A Study on the Diffusion of Atmospheric Pollutants over Taegu (대구상공에서의 대기 오염 물질 확산에 관한 연구)

  • Yun, Il-Hui;Min, Gyeong-Deok;Park, Dong-Jae
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 1994
  • Meteorological parameters In the atmospheric boundary layer and the vertical and horizontal dispersion parameters were determined by analyzing the data obtained by the special upper-air observations of one clear day for each season from October 1991 to August 1992. The concentration of the aklospheric pollutants over Taegu was analyzed by using the application of the Gaussian diffusion model. In the diurnal variation of diffusion of atmospheric pollutants, vertical diffusion due to turbulence is active in daytime while horizontal diffusion due to wind is active in nighttime. The mean concentration of pollutants in the side of downwind is higher during the daytime than the nighttime. Thus, the height of the mixed-layer at the nighttime considered as the most important parameter of the mean concentration of pollutants. In the seasonal variation of diffusion of atmospheric pollutants, vertical diffusion due to strong solar radiation is active in summer case day, and horizontal diffusion due to strong wind is active in winter case day. In winter case day, the mean concentration of pollutants in the side of downwind is maximum in the daytime. However, in summer case day, that is maximum in the nighttime.

  • PDF