• Title/Summary/Keyword: Earth fault

Search Result 425, Processing Time 0.03 seconds

Geological Values of Seonangbawi Area as A Geological Field Course Site (야외지질학습장으로써 서낭바위 일대의 지질학적 가치)

  • Kil, Youngwoo;Choi, Don Won;Cong, Nguyen The;Jung, Woochul;Jo, Yunsoo;Jung, Yeojin
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.164-177
    • /
    • 2018
  • Even though various geological attractions are distributed domestically, the geological attractions are rarely utilized as field course site. The purpose of this study is to make Seonangbawi area as the field course site after geological investigations are carried out in detail. Seonangbawi is located about 1km southeast from Songjiho beach in Gangwon-do. Seonangbawi area is simply composed of Cretaceous Seokcho granite with the overlay of Quaternary alluvium. Geological field course in the Seonangbawi area will be useful to the student and citizen for developing the knowledge of geological phenomena, such as the formation of granite and minerals, and weathering process. In addition, the student and citizen can develop the knowledge of the geological structures, such as joint (N50E/80NW, N40W/84SW), fault (N42W/83SW), foliation (N32E/54SE), and dyke (N35E/40SE, N26W/63SW), and geographical features, such as tor, taforni, groove, and gnamma in the field. Accordingly, the Seonangbawi area is the best place to learn various geological and geographical phenomena and to discuss the origin of Seonangbawi with limited space.

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.

Petrological Study on the Ultramafic Rocks in Choongnam Area (충남지역 초염기성암체의 암석학적 연구)

  • Woo, Young-Kyun;Suh, Man-Cheol
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.323-336
    • /
    • 2000
  • Ultramafic rocks in Choongnam area are mainly serpenitinites which are parent rock of talc and asbestos ore deposits. About 10 $^{\circ}$ NNE-trending parallel serpentinites masses occur as discontineous isolated lenticular intrusive bodies in Precambrian gneiss complex between Hongseong-Kwangcheon line and Onyang-Cheongyang line. The sizes of serpentinites vary from several centimeters to 1 kilometer in width and from several meters to 5 kilometers in length. The serpentinites show high SiO$_2$(39.99wt.% in average), MgO(38.46wt % in average), Cr(>1011ppm), Ni(>1660ppm), and Co(>80ppm). Most serpentinites contain serpentine more than 50%. Some serpentines contain original minerals such as olivine, pyroxene and chromite. Also, serpentinites body may contain a little serpentinized peridotite, and some talc and asbestos ore deposits. The original rocks of the serpentinites interpreted as Alpine type ultramafic rocks, and dunite and/or harzburgite which were originated from slightly depleted upper mantle(30${\sim}$40km deep), and emplaced in the crust through the large fault zones. It seems that main serpentinization from the original rocks was occurred during greenschist and/or amphibolite facies regional metamorphism in Choongnam area.

  • PDF

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Palaeomgnetic Study on the Cretaceous Rocks in the Konchonri Area of the Northern Milyang Subbasin, Korea (밀양소분지 건천리 일원의 백악기 암석에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Yun, Sung-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • A palaeomagnetic study was carried out on Early through Late Cretaceous sandstones and volcanic sequences (the Songnaedong Formation, Chaeyaksan Volcanics, Konchonri Formation, and Jusasan Andesite it ascending order) from Konchonri area in the northern Milyang subbasin of the Kyongsang Basin, Korea. A high-temperature stable remanence with direction of $d=22.9^{\circ},\;i=59.1^{\circ}\;({\alpha}_{95}=3.0^{\circ})$ has been isolated and a corresponding pole was $71.6^{\circ}N,\;199.6^{\circ}E\;(A_{95}=4.2^{\circ})$. The characteristic high-temperature component resides in both hematite and magnetite. The primary nature of this remanence is confirmed from positive fold and reversals tests, The palaeopole is consistent with those of the Hayang Group in other parts of the Kyongsang Basin. A comparison of the palaeomagnetic pole position from the studied area with the contemporary pole from China west of the Tan-Lu fault presents that Konchonri area has experienced little latitudinal displacement nor vertical-axis block rotation relative to the Chinese blocks since the Cretaceous. Based on the formations indicating dual polarity, radiometric and paleontologic data, the magnetostratigraphic age of the studied sequence from the Songnedong Formation to the Jusasan Andesite ranges from upper Albian to lower Campanian reverse polarity chronozone. On the other hand, volcanic samples of the Chaeyaksan Volcanics and the Jusasan Andesite showed the scattered directions considered in group, even though individual sample showed a stable remanent magnetization in response to thermal demagnetization. It indicates that they have been reworked after acquisition of the stable remanent magnetization.

  • PDF

Geologic Structure Analysis from the Integration of Magnetotelluric and Gravity Models at Hwasan Caldera (화산칼데라 지역 중력 및 자기지전류 탐사 자료의 복합해석을 통한 지질구조 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kim, Jung-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-26
    • /
    • 2008
  • A multi-geophysical surveys were carried out at Hwasan caldera which is located in Euisung Sub-basin. In order to overcome the limitation of the previous studies, dense gravity data and magnetotelluric (MT) data were obtained and integrated. In this study, the independent inversion models from gravity and MT method were integrated using a correlation and classification approaches to map geologic structure. The results of integration analysis indicated followings; 1) pyroclastic rocks around the central area of Hwasan caldera have lower density and resistivity when compared with those of neighborhood regions and are extended to around 1 km in depth, 2) the high resistivity and density intrusive igneous rocks are imaged around the ring fault boundary, and 3) the basement structure, which has low resistivity and high density, 5 km deep inferred by integration analysis. Also, for integration analysis, we suggested Structure Index method. This method is analyzed using Type Angle and Type Intensity, which are calculated by the spatial correlation of the physical properties. In this study, we can perform the integration analysis effectively using Structure Index method.

  • PDF

K-Ar Ages of Illite from Clay Veins Distributed in Granitic Rocks in the Korean Peninsula (국내 화강암 중의 점토세맥에 포함되는 일라이트의 K-Ar 연대)

  • KITAGAWA Ryuji;NISHIDO Hirotsugu;HWANG Jin-Yeon;JIGE Mayumi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.215-225
    • /
    • 2005
  • Numerous clay veins along fractures such as fault, joints, cracks and small fissures are found in granitic rocks in the Korean Peninsula. Granitic rocks of three geological stages (Jurassic, Cretaceous and Paleogene) occur in the Korean Peninsula, and are known as the Daebo, Bulguksa and Hoam granites, respectively. Specimens from clay veins composed or mainly mica clay mineral (illite) were dated using the K-Ar method with the hosted granitoids. The respective ages were as follows. Jurassic: granites 143.7 Ma and 160 Ma, clay mineral veins 104 Ma and 107 Ma: Cretaceous: granite 133.2 Ma, clay mineral veins 93.6 Ma, 84.2 Ma and 84.3 Ma: Paleogene: granite 39.7 Ma and 35.4Ma, clay mineral veins 27.1 Ma and 23.9 Ma. The ages of the clay veins in the Korean Peninsula are clearly much younger than those of their hosted granitoids. This contrasts with data for similar clay veins in Cretaceous and Paleogene granitoids in southwest Japan, where the K-Ar ages of mica clay minerals are slightly younger than their host rocks, or are almost the same.

Nonchange of Grounding Current due to Equipment Measuring Insulation Resistance (절연저항 측정 장치에 의한 지락사고 전류의 비변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss.In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We have installed equipment at Korea Western Power Co., Ltd., located in Taean, in order to predict and prevent the destruction of power cables. This is an entirely new installation: a set of equipment invented specifically to measure the insulation resistance of power cables. Installation of the equipment does not cause the flow of earth fault current. This ensures accurate measurement of insulation resistance values by the equipment. We have been studying this equipment in order to develop preventive technology that would show the deterioration processes of power cables.

Source Parameters for the 9 December 2000 $M_L$ 3.7 Offshore Yeongdeok Earthquake, South Korea (2000년 12월 9일 $M_L$ 3.7 영덕 해역 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • An earthquake with local magnitude $(M_L)$ 3.7 on December 9, 2000 occurred offshore Yeongdeok area, South Korea. In case of applying Chang and Baag (2006) crustal velocity model, the epicenter is $36.4462^{\circ}N\;and\;129.9789^{\circ}E$, which belongs to the inside of the Korean Peninsula Continental Shelf. Although we use the modified model reducing crustal thickness of Chang and Baag (2006) model by 5 km considering the transition from continental crust to oceanic crust in the East Sea, the epicenter was little changed. We carried out the waveform inversion analysis to estimate focal depth and focal mechanism of this event. The focal depth is estimated to be 11 ~ 12 km. The seismic moment is estimated to be $1.0{\times}10^{15}N{\cdot}m$, and this value corresponds to the moment magnitude $(M_W)$ 3.9. The offshore Yeongdeok event including May 29, 2004 offshore Uljin one show typical thrust faulting, and the direction of P-axis is ESE-WNW. The moment magnitude estimated by the spectral analysis is 4.0, which is similar to that by the waveform inversion analysis. Average stress drop is estimated to be 3.4 MPa.