• Title/Summary/Keyword: Earth bolt

Search Result 14, Processing Time 0.018 seconds

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction (지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구)

  • Lee, Ki-Sun;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • In study, Structural stability was considered when applying the high strength strut method with improved general strut method. considered whether there is sufficient stiffness to so as not buckling to the maximum hypothetical earth pressure. also structure stability of the strut component was reviewed. The high strength strut method is a technique used in place of the general strut method. high strength prefabricated Strut method is a technique that has bolt holes drilled in the upper flange at regular intervals. As a result of the buckling analysis, it was considered that the safety factor increased by about 5 %. also Since the stress generated is below the allowable stress, it is judged that structural stability of the strut is ensured. In particular, the safety factor of axial compressive stress increases about 16 % with use of high strength steel when applying the high strength prefabricated strut method. the high strength strut method is construction method may shorten the construction period and there is no expense to purchase additional materials.

A Study on the Influence of Blasting Vibration and Sound on Each floor in Building during Blasting Operation (저층건축물 인근 발파작업시 진동 및 폭음이 층별로 미치는 영향 연구)

  • 이신;김상욱;을지나란플래브토톡;강대우
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.35-41
    • /
    • 2004
  • Many buildings have been bolt in Korea. Because blasting operations and more efficient to make excavate rock than other methods, it's more extensively used for new construction, enlargement of buildings, subway work, etc. However, blasting vibrations and sound often create pollution. A study, 'The place of gathering earth and sand to construct a building site in Yangsan', has been done in Gyo-dong, in Yangsan. There are two high-rise apartment and buildings, beside a construction site. The blasting vibrations and sound were monitored on the 1st, 4th floors in building(4th floor), and the results of the analysis are as follows: The blasting vibrations decreased being transmited from 1st floor to 4th floor.