• Title/Summary/Keyword: Earth Remote Sensing

Search Result 892, Processing Time 0.019 seconds

Study on the Current Status Analysis of Urban Green Spaces in Seoul Focusing on Elementary School Surroundings - Remote Sensing Based Vegetation Classification - (초등학교 주변을 중심으로 본 서울시 도시녹지 현황 분석 및 고찰 - 원격탐사 방법을 이용한 식생분류 -)

  • Kim, Hyun-Ok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.8-18
    • /
    • 2012
  • Urban nature plays an important role not only in the improvement of the physical environment but also from the perspective of psychological and social function. In particular, schoolyards as well as the green spaces near school surroundings function as a primary space for urban children to experience nature in Korea, as they spend most of their time at school. In this study, the status of urban green spaces near school surroundings was examined. For the analysis, 185 elementary schools in Seoul were selected and the green spaces within a radius of 300m(defined as 'school zone' in this study) were analyzed using the Rapid Eye multispectral satellite image data. The mean green space ratio of school zone accounts to about 21% with a high variation from 74% to 0.7% and more than half of the school zone have a green space ratio of less than 20%. Schools with a high green space ratio in their school zone are mostly located near urban forests, so forest areas particularly contribute to increase the green space ratio. Furthermore, forest vegetation shows relatively higher vitality than other green spaces located in urbanized areas. In contrast, schools with a low green space ratio in their school zone are mostly situated in high-density residential areas and the green spaces show relatively low vegetation vitality. Except for the urban forest, the majority of urban green spaces in urbanized areas are landscape green facilities in apartment districts. The other types of urban open spaces such as environmentally shaped schoolyards or street parks account only for a very small proportion of school surroundings. Therefore, it is needed to establish countermeasures in the context of urban planning; e.g. to promote the school forest projects preferentially by selecting schools with a extremely low green space ratio in their school zone, to foster roof greening in near surroundings, and to connect schoolyards organically with nearby apartment landscape green facilities as an easily accessible urban open space.

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.