• 제목/요약/키워드: Earth Pressure

검색결과 1,229건 처리시간 0.04초

정지토압계수 측정에 관한 연구 1 (A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1)

  • 송무효
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

사질토지반에 설치된 원형수직구의 강성흙막이벽에 작용하는 토압 (Earth Pressure Acting on the Diaphragm Wall of a Shaft in Cohesionless Soils)

  • 천병식;신영완;공진영;황의성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.734-741
    • /
    • 2008
  • At-rest and active earth pressure in plane strain condition have been applied to the design of cylindrical retaining walls. But many researchers have indicated that the earth pressure on the cylindrical retaining walls would be smaller than in plane strain condition due to wall deformation and stress relief. In this paper, the distribution of earth pressure acting on diaphragm wall of a shaft in dry sand was predicted by using the convergence confinement method and model test was performed to verify the estimated values. Test results showed that the earth pressure acting on the diaphragm wall of a shaft was expected to be 1.1~1.5 times larger than active earth pressure of plane strain condition and 0.7~0.9 times less than at-rest earth pressure.

  • PDF

Effect of Joint Spacing on the Earth Pressure Against the Support System in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • 한국지반환경공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.29-37
    • /
    • 2016
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint spacing as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the magnitude and distribution of earth pressure were strongly affected by the different joint spacing as well as the rock type and joint condition. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the joint spacing as well as the rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

중력식 옹벽에 작용하는 배면 동적 토력의 영향 인자 분석 (Analysis of influence factors on the seismic earth pressure acting on gravity walls)

  • 윤석재;김성렬;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.75-82
    • /
    • 2002
  • The Mononobe-Okabe method is generally used to evaluate the dynamic earth force for the seismic design of retaining walls. However, the Mononobe-Okabe method does not consider the effects of the dynamic interactions between the backfill soil and the wall. In fact, a phase difference exists between the inertia force and the seismic earth pressure. In this study, shaking table tests were peformed on gravity walls retaining dry backfill sand to analyze the influence of several parameters (the unit weight of the wall, the input acceleration and base friction) on the development of the seismic earth pressure. The experiments revealed that the magnitude of the inertia force mobilized during seismic loading affected the seismic earth pressure. The difference in the phase angles between the inertia force and the seismic earth pressure was retained at 180 degrees before the wall failed but its magnitude changed significantly as the wall began to fail.

  • PDF

강성옹벽에 작용하는 비선형 주동토압의 산정 (Estimation of Nonlinearly Distributed Active Earth Pressure on Rigid Retaining Wall)

  • 백규호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.443-450
    • /
    • 2002
  • It is known that the distribution of the active earth pressure against a translating rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the present paper, a new formulation for calculating the active earth pressure on a rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the total active earth force on the translating wall.

  • PDF

암반지층 굴착벽체에 작용하는 토압에 대한 절리의 영향 (Effect of Joint on the Earth Pressure Against an Excavation Wall in Rockmass)

  • 손무락;솔로몬 아데도쿤
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.505-513
    • /
    • 2014
  • 본 논문은 암반지층에서 다양한 암반종류 및 절리조건들을 고려하면서 굴착벽체에 작용하는 토압에 대한 절리의 영향을 조사한 것이다. 이를 위해 본 연구는 먼저 기존 선행연구에 대해서 살펴보고 그 다음으로 기존 선행연구의 한계를 극복하기 위하여 개별요소법에 근거한 수치해석적 매개변수해석을 수행하였다. 수치해석은 매개변수로서 암반종류 및 절리조건(절리면의 전단강도, 절리경사각 및 절리군의 수)을 고려하였으며, 지반과 굴착벽체의 상호작용하에 발생된 토압의 크기 및 분포특성이 조사되었다. 이와 더불어, 암반지층에서 발생된 토압과 토사지반에서의 경험토압인 Peck토압이 서로 비교되었다. 비교결과 절리가 형성된 암반지층에서 발생된 토압은 암반의 종류 및 절리조건에 따라서 크게 영향을 받았으며 토사지반에 대한 Peck의 경험토압과 서로 다른 결과를 나타내었다.

원형수직구에 설치된 강성벽체에 작용하는 토압산정방법 (Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft)

  • 공진영;신영완;황의성;천병식
    • 한국지반공학회논문집
    • /
    • 제25권1호
    • /
    • pp.21-29
    • /
    • 2009
  • 평면변형조건의 벽체에 작용하는 토압은 벽체의 형태에 따라 많은 연구가 수행되어 거의 통일된 방법이 설계에 사용되고 있다. 그러나, 일반적으로 지중연속벽(diaphragm wall)공법에 의해 시공되는 원형수직구 벽체에 작용하는 토압은 정지토압을 적용하여 설계하고 있어 안전측이지만 과다한 단면설계를 수행하고 있다. 본 연구에서는 사질토지반에 설치된 원형수직구의 지반-구조물 상호작용에 의해 강성벽계에 작용하는 평형토압을 산정하기 위해 변형구속범의 적용을 제안하였다. 또한, 원통형벽체 모형실험을 통하여 벽체에 작용하는 토압분포를 확인하였다. 실험결과 토압은 주동토압보다 약 1.4배 크고 정지토압보다 0.8배 작았으며, 변형구속법에 의한 예측값과 전반적으로 잘 일치하였다.

Effects of Relief Shelves on Stability of Retaining Walls

  • Ahn, Taebong
    • 한국지반환경공학회 논문집
    • /
    • 제23권9호
    • /
    • pp.25-31
    • /
    • 2022
  • Attaching shelf to retaining structure leads to a decrease in the total lateral earth pressure. This decrease enables the retaining structures to become more stable, to have small displacement, and to exhibit lower bending moments, the relief shelves effects are analyzed using FEM in order to understand how they stabilize cantilever wall in this study. Several models are varied by changing location and width of shelves to realize earth pressure and displacements of retaining wall. The displacement is getting smaller because earth pressure acting on shelf increases as shelves locations are lower and width is longer. The ground settlement variation effects caused by relief shelves are studied also. The ground settlement increases abruptly where shelf location is between of 0.5H and 0.625H, and settlement decreases suddenly where shelf width is between b/h=0.375 and b/h=0.500. The shelf significantly reduces earth pressure and movement of the wall. This decrease in the lateral pressure increases the retaining structure stability.

철도하부 비개착공법의 벽면배면토사의 미소변형에 따른 수평토압 및 응력이완영역에 관한 연구 (A study on the lateral Earth Pressure and Stress Relaxation Region According to the Infinitesimal Deformation of the Wall and Backside Earth Built by Non-excavation Method Under Railroad)

  • 박윤식;이준석;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2393-2399
    • /
    • 2011
  • In the case where the bottom of railroad is penetrated by non-excavation construction method, the design is performed based on the assumption that there is no displacement and no change of stress However, measurement data showed that reduction of earth pressure and relaxation of stress take place by the displacement. In this study, we investigated the earth pressure on the structure under the railroad constructed by a non-excavation method and the stress relaxation region. The design based on earth pressure is non-economical because it is an over design. Relaxation of stress may lead to road base settlement and rail irregularly due to the reduced railroad supporting stiffness, to ballast crack in the case of concrete roadbed. The result showed that it is reasonable to set the stress on the structures as active earth pressure not as earth pressure at rest. Additionally, the study on the stress relaxation region identified the regions that should be supported in future construction by a non-excavation method.

  • PDF

Coefficient charts for active earth pressures under combined loadings

  • Zheng, De-Feng;Nian, Ting-Kai;Liu, Bo;Yin, Ping;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.461-476
    • /
    • 2015
  • Rankine's theory of earth pressure cannot be directly employed to c-${\phi}$ soils backfill with a sloping ground subjected to complex loadings. In this paper, an analytical solution for active earth pressures on retaining structures of cohesive backfill with an inclined surface subjected to surcharge, pore water pressure and seismic loadings, are derived on the basis of the lower-bound theorem of limit analysis combined with Rankine's earth pressure theory and the Mohr-Coulomb yield criterion. The generalized active earth pressure coefficients (dimensionless total active thrusts) are presented for use in comprehensive design charts which eliminate the need for tedious and cumbersome graphical diagram process. Charts are developed for rigid earth retaining structures under complex environmental loadings such as the surcharge, pore water pressure and seismic inertia force. An example is presented to illustrate the practical application for the proposed coefficient charts.