• Title/Summary/Keyword: Early loading

Search Result 252, Processing Time 0.031 seconds

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

  • Seo, Jin-Ju;Choi, Nam-Ryoung;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.291-295
    • /
    • 2012
  • In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

Assessment of Pollutant Loading Potential during Land Application of Animal Waste (축분퇴비의 농지환원시 오염부하 포텐셜 평가)

  • 홍성구;이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.66-74
    • /
    • 2001
  • Pollutant loading potential was evaluated for manure application practices on farm fields, through survey and pot experiments. The survey indicated that most farmers applied the manure during the early spring. About 74% farmers apply the manure during the period from December to May. Considering the monthly rainfall amount in this period, the pollutant loading potential is not high. Leachate obtained from pot piled up with manure compost, using a rainfall simulator, showed that average concentrations of COD, SS, TKN, N $O_{3-}$N, TP were up to 2,000mg/L, 240mg/L, 107mg/L, 10mg/L, 50mg/L, respectively. These concentrations could be affected by rainfall intensity and the amount of piled manure compost. Therefore, implementation of management practices are recommended to control or minimize of leachate from manure compost piled on farm field.

  • PDF

Histomorphometric analysis of an immediate non-functional loaded implant in dogs

  • Ha, Jeong-Wan;Kim, Su-Gwan;Kim, Hak-Hyun;Moon, Seong-Yong;Lim, Sung-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.90-94
    • /
    • 2008
  • The purpose of this study was to investigate the effects of immediate non-functional loading by analyzing histomorphology around the implant tissues in dogs. Five eight- to nine-month-old full-grown dogs weighing around 12 kg were used in the study. Group I (control group) comprised those in which delayed loading was applied to the right side of the mandible, and Group II (experimental group) consisted of dogs in which immediate loading was performed on the left side of the mandible. Resorbable blast media (RBM)-treated double-threaded US III implants measuring 3.5 mm in diameter and 11 mm long were used in the study. Each animal received four implants in each group, for a total of 40 implants. Cemented type abutments were used after implantation. An 8-week period was allowed for bone healing and an abutment was placed after exposing the periosteum for loading. An implant sample was obtained from bone blocks taken when the dogs were killed at 16 weeks after loading. A Mann-Whitney U-test was performed to evaluate statistical significance. Student's t-test was used for the histological evaluation. The bone formation ratio in Groups 1 and 2 was 88.23 and 86.41%, respectively. No significant difference in new bone formation was observed in the two groups. As no significant difference was seen in new bone formation between the delayed and immediate loading groups, early loading might be possible after implant placement.

DETECTION OF MICROSCOPIC BEHAVIOR OF LOW VELOCITY IMPACT DAMAGED CFRP LAMINATE UNDER TENSILE LOADING BY ELASTIC WAVES (탄성파 응용기술에 의한 CFRP 복합재료의 저속충격 손상역의 미시적 거동 특성 탐지)

  • 이준현;권오양;이승석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.650-655
    • /
    • 1993
  • Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.

  • PDF

Implementation of Dynamic Context-Awareness Platform for IoT Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chigon;Yoon, Changpyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.346-348
    • /
    • 2022
  • A monitoring system was constructed to identify the cause of occurrence based on data on the analysis of the ignition factors of fermentation heat generated from loading waste. Universal Middleware was used to provide a real-time run-time environment for the configuration and speed of scenarios for each type of fire early warning. It is necessary to dynamically recognize the loading height and pressure of the loading waste, the drying of wood, batteries, and plastic waste, which are representative compositional wastes, and the carbonization changes on the surface. Therefore, this IoT situation recognition platform for analyzing low-temperature-fired fire possibility data was dynamically configured and presented.

  • PDF

Full-mouth rehabilitation by immediate implantation combined with orthognathic surgery: a clinical report (악교정 수술을 동반한 임플란트 보철물을 이용한 완전구강회복 증례)

  • Ahn, Hye-Rim;Heo, Ji-Ye;Kim, Chul-Hoon;Hwang, Hee-Seong;Kim, Bok-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Clinical therapy that combines full-mouth rehabilitation with immediate implantation and orthognathic surgery poses a challenge to prosthodontists. This clinical report describes a multidisciplinary approach to the diagnosis and treatment of a patient presenting with skeletal discrepancy and rampant caries. The results thus achieved indicate that full-mouth rehabilitation by fixed immediate and early loading implantation accompanied by orthognathic surgery can be a predictable and effective treatment procedure.

Runoff Characteristics of Nutrients from Agroforest Culture Field (산림농업지대에서 식물영양물질의 유출특성)

  • Kim, Eun-Hyeok;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.331-336
    • /
    • 2014
  • Sediment and nutrient loading caused by the forest to conversion of agricultural lands have led to the deterioration in near water ecosystem. This study was carried out to examine the effects of agroforest culture field and open field culture field on water quality and runoff loading of nutrient. The runoff loading of Tot-N and Tot-P in agroforest culture field were similar to open field culture field. The runoff loading of total suspended solids (TSS) in agroforest culture field and open field culture field were $2,721kg{\pm}196/10a$ and $420{\pm}29kg/10a$ in 2011 and $696kg{\pm}59/10a$ and $463{\pm}36kg/10a$ in 2012, respectively. Our investigation showed that the runoff loading of TSS from agroforest culture field decreased when soil cover and soil stabilization increased. Therefore, protect facility of soil erosion for early alteration of agricultural lands are needed to minimize the soil erosion from agroforest culture field.

An Experimental Study on the Permeability of Reinforcement Concrete on Consideration of Pre-loading (선행하중을 고려한 보강 콘크리트의 투수성능에 관한 실험적 연구)

  • Han, Byoung-Young;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.87-92
    • /
    • 2005
  • The permeability of concrete affects largely on the durability of concrete, therefore it is required that the correct assessment and improvement of permeability. Therefore it is rational method that the permeability of concrete structures is estimated in the common use states under loading than in the early sound conditions. In this study, to improve the permeable efficiency of concrete, some kinds of fiber and resin are mixed in making of concrete specimens. And also, for the reasonable assessment of permeability, after 50% and 70% pre-loadings of its compressive strength were acted on the specimens, the tests were executed. From the results of this study, in the case of 50% pre-loading coefficients of permeability were increased about 1.4times against the nonpre-loading specimens and in the case of 70% pre-loading they were increased about 17.8times. And it turned out that hybrid steel fiber reinforcement is most effective for the improvement of permeable efficiency of concrete.

Fatigue behavior of concrete beams reinforced with HRBF500 steel bars

  • Li, Ke;Wang, Xin-Ling;Cao, Shuang-Yin;Chen, Qing-Ping
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • The purpose of this study was to investigate experimentally the fatigue performance of reinforced concrete (RC) beams with hot-rolled ribbed fine-grained steel bars of yielding strength 500MPa (HRBF500). Three rectangular and three T-section RC beams with HRBF500 bars were constructed and tested under static and constant-amplitude cyclic loading. Prior to the application of repeated loading, all beams were initially cracked under static loading. The major test variables were the steel ratio, cross-sectional shape and stress range. The stress evolution of HRBF500 bars, the information about crack growth and the deflection developments of test beams were presented and analyzed. Rapid increases in deflections and tension steel stress occured in the early stages of fatigue loading, and were followed by a relatively stable period. Test results indicate that, the concrete beams reinforced with appropriate amount of HRBF500 bars can survive 2.5 million cycles of constant-amplitude cyclic loading with no apparent signs of damage, on condition that the initial extreme tensile stress in HRBF500 steel bars was controlled less than 150 MPa. It was also found that, the initial extreme tension steel stress, stress range, and steel ratio were the main factors that affected the fatigue properties of RC beams with HRBF500 bars, whose effects on fatigue properties were fully discussed in this paper, while the cross-sectional shape had no significant influence in fatigue properties. The results provide important guidance for the fatigue design of concrete beams reinforced with HRBF500 steel bars.