• 제목/요약/키워드: Early diagnosis of cancer

검색결과 700건 처리시간 0.032초

유방암 진단에 있어서 탈륨스캔과 Tc-99m MIBI 스캔의 비교 (Comparison of Thallium-201 Scan and Tc-99m Sestamibi Scan in the Differential Diagnosis of Breast Mass)

  • 조인호;원규장;이형우;이수정
    • 대한핵의학회지
    • /
    • 제33권1호
    • /
    • pp.76-83
    • /
    • 1999
  • 목적: 유방종괴의 악성과 양성을 구별하는 데 사용되고 있는 탈륨스캔의 조기스캔 및 지연스캔과 함께 Tc-99m MIBI 스캔을 시행하여 이들을 비교하였다. 대상 및 방법: 유방종괴를 호소한 환자 38명을 대상으로 탈륨의 조기스캔과 지연스캔 및 Tc-99m MIBI 스캔을 얻었다. 탈륨스캔은 74-111 MBq의 탈륨을 정맥주사한 후 10분과 3시간에 촬영을 하고, 이어서 555-740 MBq의 Tc-99m MIBI를 정맥주사하고 30분 후에 전면상과 측면상을 얻어 서로 비교하였다. 결과: 38명의 환자 중 23예가 악성 종양으로, 15예가 양성 종양이었다. 유방암 진단의 민감도와 특이도는 탈륨 조기스캔이 100% (23/23)와 73% (11/15), 탈륨 지연스캔이 82% (18/22)와 73% (l1/15), Tc-99m MIBI 스캔이 90% (18/20)와 83% (10/12)로서 탈륨 조기스캔의 민감도가 탈륨 지연스캔보다 유의하게 높았으나(p<0.05), 다른 지표의 유의한 차이는 없었다. 탈륨 조기스캔과 지연스캔에서 위양성을 보인 섬유선종 3예와 비정형 상피세포증식증 1예의 종괴의 크기는 음성으르 나온 11예의 양성 종양보다 유의하게 컸다(p<0.01). 액와부 림프절 전이의 진단적 민감도는 탈륨 조기스캔이 38% (5/13), 탈륨 지연스캔이 15% (2/13), Tc-99m MIBI 평면스캔이 58% (7/12), 단층영상이 67% (4/6)였다. Tc-99m MIBl 평면, 단층영상이 탈륨 지연스캔보다 높았다. 결론: 유방암 진단에서 탈륨의 조기스캔과 Tc-99m MIBI스캔은 진단능에서 차이가 없었으나 탈륨 지연스캔은 민감도가 낮았다. 액와부 림프절 전이의 진단에는 탈륨스캔보다 Tc-99m MIBI 스캔이 우수하였다.

  • PDF

전이성 흉막선암의 임상 경과에 관한 연구 (A Study on Clinical Progress of the Metastatic Adenocarcinoma of Pleura)

  • 양성욱;이태관;이태헌;조덕수;백현선;김지영;이혜경;김귀완
    • Tuberculosis and Respiratory Diseases
    • /
    • 제42권2호
    • /
    • pp.156-164
    • /
    • 1995
  • 연구배경: 전이성 흉막선암은 악성 경과를 취하고, 고령인 경우가 많고, 그 외에 경제적 이유 등으로 인하여 적극적인 진단 및 치료가 환자에게 실질적인 도움이 될 지 의문이다. 이에 저자들은 우리 나라에서의 전이성 흉막선암 환자들의 임상경과를 관찰하여 진단적 검사및 수기시행의 의미, 치료의 효과, 예후 등을 판정하고자 본 연구를 시행하였다. 방법: 1990년 1월부터 1994년 12월에 걸쳐 전주 예수병원 방문 환자 중 흉수 세포진(106명) 혹은 흉막생검(22명)에서 전이성 흉막선암으로 확진되었던 환자 113명을 대상으로 후향적으로 조사하였다. 결과 1) 전체 113명 중 남자 59명(52.2%), 여자 54명(47.8%) 이었고, 평균 연령은 $57.4{\pm}12.1$세 였다. 2) 원발병소는 전체적으로 폐암 46.9%(53/113), 위암 20.4%(23/113), 유방암 11.5%(13/113) 순이었고, 원발병소를 규명하지 못한 경우가 6.2%(7/113) 있었으며, 남자는 폐암(55.9%, 20/59), 위암(28.8%, 17/59), 여자는 폐암(37.0%, 20/54), 유방암(24.1%, 13/54)이 많았다. 3) 임상증상은 호흡곤란(69%), 기침(61%), 흉통(50%), 체중감소(50%), 식욕부진(49%), 객담(43%), 권태(30%) 등의 순이었다. 4) 흉수 소견은 94.4%(102/108)가 삼출성, 36~53%(39~58/109)가 혈성, 74.3%(84/113)가 일측성이었고, 백혈구 중 임파구가 $71{\pm}27%$로 우세하였다. 5) 66명 중 40명(60.6%)에서 CEA치가 흉수 혹은 혈청에서 10ng/ml 이상으로 증가하였고, 60명 중 57명(95%)에서 흉수 ADA치가 40 U/L 미만이었다. 6) 수술적요법을 제외한 여러 가지 치료가 시행되었으나 생존기간 연장의 효과가 있었는지는 의문이다. 7) 평균 생존기간은 $12.7{\pm}13.5$주였다. 결론: 이상의 연구로 볼 때, 이 질환은 아직 효과적인 치료법이 없고, 매우 악성경과를 취하는 질환이기 때문에 적극적인 검사 및 진단 수기의 진행은 특이적인 치료가 가능한 원발병소의 조기 발견과 치료 및 예방 등에 목적을 두어야 할 것이며, 생존기간의 연장 및 생존기간동안 삶의 질을 향상시키기 위한 노력도 병행되어야 할 것으로 생각된다.

  • PDF

단일 폐병변에서 T1-201 SPECT를 이용한 악성 종양의 감별진단 (Thallium-201 SPECT in Differential Diagnosis of Malignancy from Benign Pathology in Patients with a Solitary Pulmonary Lesion)

  • 안병철;이재태;천경아;김동환;손상균;김창호;박재용;정태훈;이규보;김천기
    • 대한핵의학회지
    • /
    • 제32권2호
    • /
    • pp.143-150
    • /
    • 1998
  • 목적: T1-201 SPECT는 악성과 양성폐질환을 감별하는데 비교적 높은 예민도를 가지는 정확한 검사법으로 보고되고 있으나, 이 검사법의 특이도 및 예측도는 대상환자군의 양성질환의 종류와 빈도에 의해 많은 영향을 받는 것으로 알려져 있다. 한국에서는 결핵에 의한 양성 폐결절이 많아 T1-201 SPECT의 악양성 감별능이 외국에서 보고되는 결과와는 많은 차이가 있을 것으로 생각되고 있다. 본 연구는 폐결절 환자를 대상으로 하여 T1-201 SPECT의 악양성감별능을 알아보고자 하였다. 대상 및 방법: 경북대학교 병원 호흡기 내과, 종양내과에서 컴퓨터 단층촬영상 단일폐결절을 가진 환자 133명을 대상으로 하였다. 이들 중 89명은 악성폐종양으로 조직학적으로 진단되었고, 44명은 양성폐결절로 확인되었다. 영상촬영은T1-201 111 MBq를 투여한 후 15분과 3시간에 영상을 촬영하였고, 판독은 2명의 핵의학과 전문의가 육안적으로 이상집적이 보인 경우를 양성으로 판독하였다, 양성으로 판독된 병변의 단위 voxel당 계수를 반대측 정상폐의 계수와 비교하여 T1-201 섭취비를 구하고, 초기영상과 지연영상의 섭취비를 이용하여 T1-201 정체율를 구하였다. 결과, 1) T1-201을 투여후 15분에 실시한 초기 T1-201 SPECT의 악성 폐질환의 진단의 예민도는 92%이고 3시간에 실시한 지연 T1-201 SPECT의 악성 폐질환의 진단율은 93%로 높았으나, 각각의 특이도는 39%와 41%로 낮았다. 2) 악성과 양성질환의 T1-201의 섭취비는 초기 및 지연영상 모두에서 악성폐질환의 섭취비가 유의하게 높았다(p=0.028, p=0.014). 그러나 중복되는 부분이 많았다. 3) T1-201 정체율은 악성질환에서 높은 경향을 보였으나, 유의한 차이는 없었다. 결론: 한국과 같이 활동성 염증성병변의 발생빈도가 높은 집단에서는 단일 폐결절환자를 대상으로한 T1-201 SPECT의 악성병변의 진단에 대한 예민도는 높으나 특이도가 낮고, T1-201 섭취비도 겹치는 부분이 많아 임상적으로 제한적인 가치를 가진다.

  • PDF

MicroRNAs and periodontal disease: a qualitative systematic review of human studies

  • Mico-Martinez, Pablo;Alminana-Pastor, Pedro J.;Alpiste-Illueca, Francisco;Lopez-Roldan, Andres
    • Journal of Periodontal and Implant Science
    • /
    • 제51권6호
    • /
    • pp.386-397
    • /
    • 2021
  • Purpose: MicroRNAs (miRNAs) are epigenetic post-transcriptional regulators that modulate gene expression and have been identified as biomarkers for several diseases, including cancer. This study aimed to systematically review the relationship between miRNAs and periodontal disease in humans, and to evaluate the potential of miRNAs as diagnostic and prognostic biomarkers of disease. Methods: The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (reference number CRD42020180683). The MEDLINE, Scopus, Cochrane Library, Embase, Web of Science, and SciELO databases were searched for clinical studies conducted in humans investigating periodontal diseases and miRNAs. Expression levels of miRNAs across the different groups were analysed using the collected data. Results: A total of 1,299 references were identified in the initial literature search, and 23 articles were finally included in the review. The study designs were heterogeneous, which prevented a meta-analysis of the data. Most of the studies compared miRNA expression levels between patients with periodontitis and healthy controls. The most widely researched miRNA in periodontal diseases was miR-146a. Most studies reported higher expression levels of miR-146a in patients with periodontitis than in healthy controls. In addition, many studies also focused on identifying target genes of the differentially expressed miRNAs that were significantly related to periodontal inflammation. Conclusions: The results of the studies that we analysed are promising, but diagnostic tests are needed to confirm the use of miRNAs as biomarkers to monitor and aid in the early diagnosis of periodontitis in clinical practice.

Imaging aspects of maxillomandibular bone alterations in patients with multiple myeloma treated with bisphosphonates: A systematic review

  • Amanda Katarinny Goes Gonzaga;Hannah Gil de Farias Morais;Camila Dayla Melo Oliveira;Magda Lyce Rodrigues Campos;Carolina Raiane Leite Dourado Maranhao Diaz;Marcos Custodio;Natalia Silva Andrade;Thalita Santana
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.221-231
    • /
    • 2024
  • Purpose: Multiple myeloma (MM) is a rare cancer that is typically managed with bisphosphonates to slow bone resorption and prevent skeletal complications. This study aimed to identify imaging patterns in MM patients receiving bisphosphonate therapy. Materials and Methods: This systematic review included studies investigating maxillomandibular bone alterations based on imaging examinations in MM patients treated with bisphosphonates. The selected studies were qualitatively assessed using the Critical Appraisal Tools from SUMARI. Results: Six studies, involving 669 MM patients, were included, with 447 receiving bisphosphonate treatment. The majority were treated with pamidronate, zoledronate, or a combination of both. Seventy patients developed medication-related osteonecrosis of the jaw (MRONJ), predominantly in the mandible, characterized by the presence of bony sequestrum, bone sclerosis, increased periodontal ligament space, osteolytic lesions, and osteomyelitis as observed in imaging analyses. For non-MRONJ lesions, the mandible also exhibited the highest frequency of asymptomatic bone alterations. These ranged from "punched-out" osteolytic lesions or "soap bubble" lesions to solitary bone lesions, areas of bone sclerosis, abnormalities of the hard palate, osteoporosis, non-healed alveoli, and cortical bone rupture. Conclusion: MM patients treated with bisphosphonates display radiographic patterns of maxillomandibular bone lesions. These patterns aid in diagnosis and facilitate early and targeted treatment, thereby contributing to improved morbidity outcomes for these patients.

폐 결절 검출을 위한 합성곱 신경망의 성능 개선 (Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection)

  • 김한웅;김병남;이지은;장원석;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

Impact of the human body in wireless propagation of medical implants for tumor detection

  • Morocho-Cayamcela, Manuel Eugenio;Kim, Myung-Sik;Lim, Wansu
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.19-26
    • /
    • 2020
  • This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described.

폐쇄성 수면 무호흡증과 간질성 폐질환 (Obstructive Sleep Apnea in Interstitial Lung Disease)

  • 김신범;이상학;강현희
    • 수면정신생리
    • /
    • 제24권1호
    • /
    • pp.19-23
    • /
    • 2017
  • Obstructive sleep apnea is a common disorder in which respiratory flow decreases or disappears despite respiratory effort due to occlusion of the upper respiratory tract during sleep. Oxidative stress and systemic inflammatory reaction induced by the obstruction cause complications such as hypertension, coronary artery disease, and diabetes and increase cancer incidence. Furthermore, in patients with interstitial lung disease, obstructive sleep apnea has a very high prevalence and is thought to have a close pathophysiological and clinical correlation. In other words, obstructive sleep apnea could be the cause or a complication of interstitial lung disease ; when these two afflictions coexist, the prognosis of the patient is worse. In patients with interstitial lung disease with obstructive sleep apnea, CPAP treatment significantly improved sleep and quality of life, as well as improved morbidity and mortality in a recent study. Therefore, early diagnosis and treatment of obstructive sleep apnea in patients with interstitial lung disease are very important, and additional studies designed to include patients with idiopathic pulmonary fibrosis as well as patients with advanced interstitial lung disease should be performed.

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

Development and Optimization of a Rapid Colorimetric Membrane Immunoassay for Porphyromonas gingivalis

  • Lee, Jiyon;Choi, Myoung-Kwon;Kim, Jinju;Chun, SeChul;Kim, Hong-Gyum;Lee, HoSung;Kim, JinSoo;Lee, Dongwook;Han, Seung-Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.705-709
    • /
    • 2021
  • Porphyromonas gingivalis (P. gingivalis) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer's disease, and rheumatism. Thus, a precise and sensitive test to detect P. gingivalis is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for P. gingivalis. First, we performed a visual membrane immunoassay using 3,3',5,5'-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the P. gingivalis surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103-105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that P. gingivalis could be detected without cross-reactivity to other bacteria, including Streptococcus mutans and Escherichia fergusonii. Furthermore, three clinical strains of P. gingivalis, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for P. gingivalis detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for P. gingivalis.