• Title/Summary/Keyword: Early detection algorithm

Search Result 228, Processing Time 0.025 seconds

In-Vitro Thrombosis Detection of Mechanical Valve using Artificial Neural Network (인공신경망을 이용한 기계식 판막의 생체외 모의 혈전현상 검출)

  • 이혁수;이상훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.429-438
    • /
    • 1997
  • Mechanical valve is one of the most widely used implantable artificial organs of which the reliability is so important that its failure means the death of patient. Therefore early noninvasive detection is essentially required, though mechanical valve failure with thrombosis is the most common. The objective of this paper is to detect the thrombosis formation by spectral analysis and neural network. Using microphone and amplifier, we measured the sound from the mechanical valve which is attached to the pneumatic ventricular assist device. The sound was sampled by A/D converter(DaqBook 100) and the periodogram is the main algorithm for obtaining spectrum. We made the thrombosis models using pellethane and silicon and they are thrombosis model on the valvular disk, around the sewing ring and fibrous tissue growth across the orifice of valve. The performance of the measurment system was tested firstly using 1 KHz sinusoidal wave. The measurement system detected well 1KHz spectrum as expected. The spectrum of normal and 5 kinds of thrombotic valve were obtained and primary and secondary peak appeared in each spectrum waveform. We find that the secondary peak changes according to the thrombosis model. So to distinguish the secondary peak of normal and thrombotic valve quantatively, 3 layer back propagation neural network, which contains 7, 000 input node, 20 hidden layer and 1 output was employed The trained neural network can distinguish normal and valve with more than 90% probability. As a conclusion, the noninvasive monitoring of implanted mechanical valve is possible by analysing the acoustical spectrum using neural network algorithm and this method will be applied to the performance evaluation of other implantable artificial organs.

  • PDF

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images (컴퓨터보조진단을 이용한 유방 초음파영상에서의 미세석회화 검출 효율)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Park, Hyung-Hu;Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70~98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Fault Location Estimation Algorithm in the Railway High Voltage Distribution Lines Using Flow Technique (반복계산법을 이용한 철도고압배전계통의 고장점표정 알고리즘)

  • Park, Kye-In;Chang, Sang-Hoon;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • High voltage distribution lines in the electric railway system placed according track with communication lines and signal equipments. Case of the over head lines is occurrence the many fault because lightning, rainstorm, damage from the sea wind and so on. According this fault caused protection device to wrong operation. One line ground fault that occurs most frequently in railway high voltage distribution lines and sort of faults is line short, three line ground breaking of a wire, and so on. For this reason we need precise maintenance for prevent of the faults. The most important is early detection and fast restoration in time of fault for a safety transit. In order to develop an advanced fault location device for 22.9[kV] distribution power network in electric railway system this paper deals with new fault locating algorithm using flow technique which enable to determine the location of the fault accurately. To demonstrate its superiorities, the case studies with the algorithm and the fault analysis using PSCAD/EMTDC (Power System Computer Aided Design/Electro Magnetic Transients DC Analysis Program) were carried out with the models of direct-grounded 22.9[kV] distribution network which is supposed to be the grounding method for electric railway system in Korea.

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

Classification of Porcine Wasting Diseases Using Sound Analysis

  • Gutierrez, W.M.;Kim, S.;Kim, D.H.;Yeon, S.C.;Chang, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1096-1104
    • /
    • 2010
  • This bio-acoustic study was aimed at classifying the different porcine wasting diseases through sound analysis with emphasis given to differences in the acoustic footprints of coughs in porcine circo virus type 2 (PCV2), porcine reproductive and respiratory syndrome (PRRS) virus and Mycoplasma hyopneumoniae (MH) - infected pigs from a normal cough. A total of 36 pigs (Yorkshire${\times}$Landrace${\times}$Duroc) with average weight ranging between 25-30 kg were studied, and blood samples of the suspected infected pigs were collected and subjected to serological analysis to determine PCV2, PRRS and MH. Sounds emitted by coughing pigs were recorded individually for 30 minutes depending on cough attacks by a digital camcorder placed within a meter distance from the animal. Recorded signals were digitalized in a PC using the Cool Edit Program, classified through labeling method, and analyzed by one-way analysis of variance and discriminant analysis. Input features after classification showed that normal cough had the highest pitch level compared to other infectious diseases (p<0.002) but not statistically different from PRRS and MH. PCV2 differed statistically (p<0.002) from the normal cough and PRRS but not from MH. MH had the highest intensity and all coughs differed statistically from each other (p<0.0001). PCV2 was statistically different from others (p<0.0001) in formants 1, 2, 3 and 4. There was no statistical difference in duration between different porcine diseases and the normal cough (p>0.6863). Mechanisms of cough sound creation in the airway could be used to explain these observed acoustic differences and these findings indicated that the existence of acoustically different cough patterns depend on causes or the animals' respiratory system conditions. Conclusively, differences in the status of lungs results in different cough sounds. Finally, this study could be useful in supporting an early detection method based on the on-line cough counter algorithm for the initial diagnosis of sick animals in breeding farms.

A study on removal of unnecessary input variables using multiple external association rule (다중외적연관성규칙을 이용한 불필요한 입력변수 제거에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.877-884
    • /
    • 2011
  • The decision tree is a representative algorithm of data mining and used in many domains such as retail target marketing, fraud detection, data reduction, variable screening, category merging, etc. This method is most useful in classification problems, and to make predictions for a target group after dividing it into several small groups. When we create a model of decision tree with a large number of input variables, we suffer difficulties in exploration and analysis of the model because of complex trees. And we can often find some association exist between input variables by external variables despite of no intrinsic association. In this paper, we study on the removal method of unnecessary input variables using multiple external association rules. And then we apply the removal method to actual data for its efficiencies.