• Title/Summary/Keyword: Early age strength

Search Result 502, Processing Time 0.035 seconds

Improved Rayleigh Wave Velocity Measurement Technique for Early-age Concrete Monitoring (초기 재령 콘크리트의 모니터링을 위한 개선된 레일리파 속도 측정 기법)

  • Shin Sung-Woo;Yun Chung-Bang;Popovics John S.;Song Won-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.97-103
    • /
    • 2006
  • A modified one-sided measurement technique is proposed for Rayleigh wave (R-wave) velocity measurement in concrete. The scattering from heterogeneity may affect the waveforms of R-waves in concrete, which may make the R-waves dispersive. Conventional one-sided techniques do not consider the scattering dispersion of R-waves in concrete. In this study, the maximum energy arrival concept is adopted to determine the wave velocity by employing its continuous wavelet transform. Experimental study was performed to show the effectiveness of the proposed method. The present method is applied to monitor the strength development of early-age concrete. A series of experiments were performed on early-age concrete specimens with various curing conditions. Results reveal that the proposed method can be effectively used to measure the R-wave velocity in concrete structures and to monitor the strength development of early-age concrete.

  • PDF

A Study on the Early-Age Strength Property of Concrete Using Liquid Admixture (액상형 조강제를 사용한 콘크리트의 초기강도 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Sea-Hyun;Ryu, Deug-Hyun;Park, Cho-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.469-472
    • /
    • 2006
  • Amount used of admixture fare is increasing for concrete economic efficiency and ability security. Security of economic efficiency and ability can expect by use of this admixture fare but is displaying a lot of problems on early age strength hold by hydrate delay relatively. Specially, in the case of construction site, concrete strength can speak that interrelation is high with mold removal of forms time. Therefore, is economical and need examination of plan that can secure robber within 3 days using admixture fare such as fly ash and blast furnace slage differential speech to secure function. In this study, adding liquid admixture within 1% of a binding agent quantity to examine these problem with physical characteristic after hardening ago specially, strength change at standard and air dry curing of observed change in priority. Air dried and water curing total strength enhancement effects appeared by thing which is in case of add test result liquid admixture by below 1% and strength deputy by passage of age could know is not big.

  • PDF

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Study of the Possibility of Estimating the Setting Time and Early Aage Compressive Strength of Mortar Using D-type Durometer (D형 Durometer를 이용한 모르타르의 응결 및 초기 압축강도 추정가능성 평가)

  • Han, Soo-Hwan;Hoo, Yun-Yao;Lim, Gun-Su;Hyue, Seung-Yong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.103-104
    • /
    • 2021
  • This study attempted to confirm the possibility of estimating condensation time and initial compressive strength with five types of estimation needles in the existing Durometer D type. In order to determine the surface finishing operation time and develop a method for estimating the initial age compression strength, an estimation needle capable of complexly measuring the estimation time and the initial age compression strength based on the Durometer D type was derived as 1.5, 2.0mm.

  • PDF

Improvement in Early Strength of Concrete Using Blast Furnace Slag by KOH (KOH에 의한 고로슬래그 미분말을 사용한 콘크리트의 초기강도 향상)

  • Lee, Ju-Sun;Song, Ri-Fan;Park, Byoung-Kwan;Back, Dae-Hyun;Pei, Chang-Chun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.53-56
    • /
    • 2009
  • This study reviewed the characteristics of concrete made of performance improving mixture materials based on KOH as a means to resolve the problems of initial quality reduction that result in concretes with blast furnace slag powder. Summarizing the results, first as the characteristics of fresh concrete, liquidity was found to reduce in general with increased BS substitution ratio. Objective range of liquidity was not satisfied in all mixes according to the use of performance improving mixture materials. Air capacity was satisfied to the objective range in all mixes. As the characteristics of hardened concrete, while compressive strength showed a decreasing trend with increasing BS substitution ratio at early age, increasing trend was shown by the plain with increasing BS substitution ratio at later age. On the other hand, K1 and K2 were only effective among mixture materials at early age, but K1F30 showed excellent strength at both early and later ages.

  • PDF

Evaluation of Strength and Stiffness Gain of Concrete at Early-ages (조기재령에서 콘크리트의 강도 및 강성 발현 평가)

  • Hong, Geon-Ho;Park, Hong-Gun;Eum, Tae-Sun;Mihn, Joon-Soo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.237-245
    • /
    • 2010
  • Recently, deflection of the slab during construction periods becoming one of the important issues because of increasing the large-span structures. Early removing the form and support of the slab to achieve the rapid construction cause falling-off in quality of the structures. To reduce these deterioration and make rapid construction, construction of strength and stiffness gain model is needed by the research about the early-age concrete properties. Previous research results indicated that concrete model in existing design codes could not provide the mechanical properties of early age concrete. This paper carried out the concrete compressive strength tests on the curing age at early age stage. Evaluation of the accuracy of compressive strength and modulus of elasticity gain formula in existing various design codes was performed based on this test results, and new design model was proposed. This new model will be useful to develop the new rapid construction methods or prevent the deterioration of the deflection at construction periods. Material tests were performed at 1, 3, 7, 14, 28 curing days, total 159 cylinder style specimens were tested. Based on analyzing the test results, the relationship between compressive strength and modulus of elasticity at early age was proposed.

Early Strength Properties of EVA Polymer Powder-Modified Mortars with Quick Setting Agent (급결제를 이용한 EVA 분말수지 혼입 폴리머 시멘트 모르타르의 초기강도 특성)

  • Jo, Young-Chul;Choi, Nak-Woon;Lee, Chol-Woong;Yang, Suk-Woo;So, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.309-312
    • /
    • 2005
  • Admixture compounds for shortening setting time and accelerating early strength development of EVA polymer powder-modified mortars were made by mixing various quick setting agents. As a result, the quick setting agents contribute to strength development of the mortars in the early curing age of 168h or less. In the viewpoint of early strength development of EVA polymer powder-modified mortars, an quick setting agent content of 20$\%$ is recommended. Early strength of EVA polymer powder-modified mortars expresses the excellent strength with 5$\%$, 10$\%$ of rates of polymer mixing. The rate of polymer mixing was able to be adjusted and flexural strength which is a predeterminded initial strength was also able to satisfy 3MPa(s).

  • PDF

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.