• 제목/요약/키워드: Early Detection Algorithm

검색결과 229건 처리시간 0.027초

디지털 유방영상에서 미세석회화의 자동군집화 기법 개발 (Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography)

  • 최석윤;김창수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권1호
    • /
    • pp.45-52
    • /
    • 2009
  • 유방 촬영술(Digital mammography)은 유방암의 조기 진단에서 매우 중요한 진단 방법으로서 비촉지성 유방암의 조기 발견율을 높여 유방암에 따른 여성의 사망률을 감소시키고 있다. 그 중에서도 유방 병변의 미세석회화(Microcalcification)는 조기 유방암의 진단에 있어서 중요한 병변으로 보고 되고 있으며, 선별 검사로 임상적 유용성이 확립된 상태이다. 유방 촬영술에서 미세석회화 소견은 영상의학과 전문의가 판독하여 조직 검사에서 양성 및 악성 병변에 대하여 각각 군집의 개수, 군집 당 석회화 수, 미세석회화 크기와 범위, 미세석회화 형태, 동반 종괴의 유무 등을 분석하여 최종적으로 진단을 확정한다. 그러므로 군집화된 미세석회화의 정보는 유방암 예측에 있어 임상적인 실질 정보를 가지고 있으며, 의사에게 진단을 위한 검사의 기본적인 가이드라인을 제시한다. 따라서 본 연구에서는 유방 촬영술의 디지털 영상에 나타난 미세석회화의 정량적인 계산을 위해서 DoG filter, Adaptive thresholding, Expectation Maximization의 3단계를 제안한다. 제안한 알고리듬을 실험을 통하여 군집화 및 각 클러스터 내의 미세석회화의 분포 개수, 길이를 측정하였으며, 임상의 사에게 디지털 유방영상의 분석을 통하여 초기 유방암 진단의 지표를 제시할 것으로 사료된다. 그리고 이는 객관적인 유방암 컴퓨터자동검출(CAD)에 사용될 수 있는 병변의 정보로서 가능성을 보였다.

  • PDF

인공신경망을 이용한 기계식 판막의 생체외 모의 혈전현상 검출 (In-Vitro Thrombosis Detection of Mechanical Valve using Artificial Neural Network)

  • 이혁수;이상훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.429-438
    • /
    • 1997
  • 기계식 판막은 매몰식 인공장기에 널리 사용돼 왔으며, 판막의 이상은 환자의 죽음으르 의미한다. 판막의 이상에 영향을 미치는 것은 많은 요소들이 있는데 대표적으로 기계적인 고장과 혈전현상이 있다. 그래서 비침습적으로 이것들을 발견하는 것이 필요하게 된 것이다. 이 논문의 목적은 스펙트럼의 해석과 인공신경망을 이용하여 혈전현상을 발견하는데 있다. 신호의 측정은 공압식 좌심실 보조장치에 장착한 기계식 판막으로부터 마이크로폰과 증폭기를 이용하였다. 디스크 위의 모의 혈전현상과 봉합링의 주위에 혈전현상, 20%, 40% 60%로 자라나는 혈전현상은 펠레세인과 실리콘을 이용하여 제작하였다. 기초 성능 평가를 위해 1KHz 정현파를 인가하여 시스템을 평가하였으며, 정상적인 판막과 5 종류의 혈전현상의 스펙트럼은 혈전현상의 정보를 지닌 개폐시 peak의 신호 파형에서 구하였다. 데이터의 정량적인 해석을 위해 7,000개의 입력 노드와 20개의 은닉층과 1개의 출력층으로 이루어진 인공신경망을 사용하였다. 결론적으로 훈련된 인공신경망을 사용한 결과 정상 판막과 비정상 판막을 판단하는데 90%의 판단능력을 보였다. 이상의 실험을 통해 판막의 이상유무를 신호의 스펙트럼 해석과 인공신경망을 통해 평가할수 있음을 알 수 있었다. 본 논문의 결과는 앞으로 인공장기를 몸속에 지니고 있는 환자에게서 장기의 상태를 지속적으로 감시할 수 있는 기술적 토대를 제공할 것이다.

  • PDF

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.

화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구 (A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire)

  • 김대일;정주안;박성찬;고주연;염춘호
    • 한국재난정보학회 논문집
    • /
    • 제16권1호
    • /
    • pp.96-110
    • /
    • 2020
  • 최근 국내외적으로 기후변화로 인한 대형화재, 집중호우, 지진 등으로 재난발생 가능성이 높아지고 있으며, 특히 어린이와 노약자등을 포함한 다양한 사람들이 몰리는 전통시장, 노유자시설, 다중이용시설 등 이용자 밀집지역에 대형 재난사고가 지속적으로 발생하고 있다. 연구목적: 본 연구에서는 화재발생 시 이용자 밀집시설에서 화재발생 사실을 조기에 감지하고, 대피자가 안전하게 대피하기 위해 빅데이터와 첨단기술을 활용한 재난감지 및 최적의 대피경로를 분석하고자 한다. 연구방법: 상황인지 기반의 3차원 객체모델 기술과 A*알고리즘의 최적화를 통한 새로운 알고리즘을 제안하고, 이들 활용한 시나리오 기반의 최적 대피경로 선정 기법을 제시하였다. 연구결과: HPA*E알고리즘을 이용하여 화재발생 시 대피시뮬레이션을 3D모델로 재현하고, 최적의 대피경로와 대피시간을 시나리오별로 산출하였다. 결론: 본 연구는 향후 우리나라에서 재난사고 발생 시 대피자가 안전하고 신속하게 대피할 수 있는 경로를 제시함으로써 인명피해를 줄 일 수 있을 것으로 기대된다.

컴퓨터보조진단을 이용한 유방 초음파영상에서의 미세석회화 검출 효율 (Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images)

  • 이진수;고성진;강세식;김정훈;박형후;최석윤;김창수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제35권3호
    • /
    • pp.227-235
    • /
    • 2012
  • 유방영상은 유방 전체의 재현 가능한 영상을 만들며, 만져지지 않는 조기 유방암의 가장 중요한 소견인 미세석회화와 종괴를 발견할 수 있어 유방 질환의 일차적인 선별검사로 이용되고 있다. 유방 병변의 미세석회화는 조기 유방암의 진단에 있어서 중요한 병변으로 보고되고 있지만 유방초음파 검사에서 검출이 어렵다. 본 연구에서는 유방초음파 영상에서 미세석회화 검출을 위해 6가지의 질감분석 파라미터를 이용하였으며, 정상 초음파영상과 미세석회화가 보이는 초음파 영상 간의 병변인식률을 알아보았다. 실험결과로는 유방촬영영상과 유방 초음파영상에서 병변을 구별하는 컴퓨터자동진단 인식률은 70~98%로 상당히 높은 결과를 나타내었다. ROC 분석에서도 평균대조도와 엔트로피 파라미터의 특이도는 다소 낮게 나타났으나, 나머지 4개 파라미터의 민감도와 특이도는 90% 이상을 나타내어 초음파영상에서 미세석회화 검출의 가능성을 보였다. 향후 6가지 질감분석 알고리즘들 외에 추가적인 파라미터 알고리즘의 연구가 계속 진행되어 컴퓨터자동진단의 실용화기반을 마련한다면 전문의 진단의 예비단계로서 더욱 중요한 의미를 가질 것이며, 유방암의 조기진단에 매우 유용할 것으로 사료된다.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

반복계산법을 이용한 철도고압배전계통의 고장점표정 알고리즘 (Fault Location Estimation Algorithm in the Railway High Voltage Distribution Lines Using Flow Technique)

  • 박계인;창상훈;최창규
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.71-79
    • /
    • 2008
  • 철도 고압배전선로의 경우 궤도를 따라 양방향으로 선로연변에 통신 및 신호설비와 병행하여 가공 또는 지중선로로 설치되어 있다. 가공선로의 경우에는 대기중에 노출되어 있어 뇌격, 폭풍우, 염해 등 자연현상으로 인한 고장발생이 다수 발생하고 있으며, 이에 따른 보호장치의 오 부동작이 빈번하게 발생하고 있다. 철도 고압배전선로에서 발생하는 사고 중 가장 많은 것은 1선 지락이지만 이밖에 선간 단락, 심할 경우에는 3선 지락(단락)으로까지 진전되는 사고가 있을 뿐만 아니라 단선 사고까지 발생하는 경우도 있다. 따라서 사고를 방지하기 위해서는 보다 상세한 점검보수가 필요하며, 고장발생시 조기발견과 신속한 고장처리는 철도안전수송에 중요하다. 본 논문에서는 철도 고압배전계통의 주류를 이루게 될 22.9[kV] 직접접지 계통을 대상으로 고장 발생시 고장 위치를 신속하게 표정할 수 있는 고장점 표정 알고리즘 개발을 위해 22.9[kV] 고압배전계통을 모델링 하여 특성해석과 고장해석을 수행하였고, 정확한 고장점 표정이 가능한 반복계산법을 이용한 알고리즘을 제시하였으며, 사례연구를 통해 성능을 입증하였다.

볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구 (A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm)

  • 최원진;문범식;송재욱;김영진
    • 한국항해항만학회지
    • /
    • 제48권3호
    • /
    • pp.164-170
    • /
    • 2024
  • 등부표는 해상에 부유하는 구조물로, 해양 기상 등 외력에 의해 표류하여 위치가 고정되어 있지 않고 이동하므로 등부표의 유실 또는 위치 이탈을 감시하는 것이 필요하다. 이에 해양수산부는 등부표의 과거 위치 데이터를 기반으로 등부표별 위치패턴을 분석하여 등부표의 위치 이탈에 대한 경보를 제공하고자 한다. 하지만, 매 2년 주기로 실시되는 인양점검에 의해 등부표의 위치패턴이 변화하므로, 인양점검 후 새로운 위치패턴을 분석하여 위치를 감시하는 것이 필요하다. 본 연구에서는 볼록 껍질 알고리즘과 거리 기반 군집 알고리즘을 사용하여 다양한 기간 동안의 등부표 위치 데이터를 분석하였다. 또한, 등부표의 정확한 위치패턴 인식을 위한 최적의 데이터 수집 기간을 식별하였다. 연구 결과, 안정적인 위치패턴을 확립하는 최적의 데이터 수집기간은 9주이며, 위치 데이터의 약 89.8%를 설명할 수 있는 것으로 나타났다. 본 연구 결과는 위치패턴 기반 등부표 관리 기능을 향상하는 데 활용될 수 있으며, 효과적인 모니터링과 등부표 위치 이탈 여부의 조기 감지에 기여할 것으로 기대한다.

Classification of Porcine Wasting Diseases Using Sound Analysis

  • Gutierrez, W.M.;Kim, S.;Kim, D.H.;Yeon, S.C.;Chang, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권8호
    • /
    • pp.1096-1104
    • /
    • 2010
  • This bio-acoustic study was aimed at classifying the different porcine wasting diseases through sound analysis with emphasis given to differences in the acoustic footprints of coughs in porcine circo virus type 2 (PCV2), porcine reproductive and respiratory syndrome (PRRS) virus and Mycoplasma hyopneumoniae (MH) - infected pigs from a normal cough. A total of 36 pigs (Yorkshire${\times}$Landrace${\times}$Duroc) with average weight ranging between 25-30 kg were studied, and blood samples of the suspected infected pigs were collected and subjected to serological analysis to determine PCV2, PRRS and MH. Sounds emitted by coughing pigs were recorded individually for 30 minutes depending on cough attacks by a digital camcorder placed within a meter distance from the animal. Recorded signals were digitalized in a PC using the Cool Edit Program, classified through labeling method, and analyzed by one-way analysis of variance and discriminant analysis. Input features after classification showed that normal cough had the highest pitch level compared to other infectious diseases (p<0.002) but not statistically different from PRRS and MH. PCV2 differed statistically (p<0.002) from the normal cough and PRRS but not from MH. MH had the highest intensity and all coughs differed statistically from each other (p<0.0001). PCV2 was statistically different from others (p<0.0001) in formants 1, 2, 3 and 4. There was no statistical difference in duration between different porcine diseases and the normal cough (p>0.6863). Mechanisms of cough sound creation in the airway could be used to explain these observed acoustic differences and these findings indicated that the existence of acoustically different cough patterns depend on causes or the animals' respiratory system conditions. Conclusively, differences in the status of lungs results in different cough sounds. Finally, this study could be useful in supporting an early detection method based on the on-line cough counter algorithm for the initial diagnosis of sick animals in breeding farms.