• Title/Summary/Keyword: Early Detection Algorithm

Search Result 229, Processing Time 0.022 seconds

A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram (디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법)

  • Jeon, Geum-Sang;Lee, Won-Chang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.

Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques

  • Similien Ndagijimana;Ignace Habimana Kabano;Emmanuel Masabo;Jean Marie Ntaganda
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • Objectives: Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children. Methods: The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen. Results: The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status. Conclusions: Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.

Melanoma Classification Algorithm using Gray-level Conversion Matrix Feature and Support Vector Machine (회색도 변환 행렬 특징과 SVM을 이용한 흑색종 분류 알고리즘)

  • Koo, Jung Mo;Na, Sung Dae;Cho, Jin-Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2018
  • Recently, human life is getting longer due to change of living environment and development of medical technology, and silver medical technology has been in the limelight. Geriatric skin disease is difficult to detect early, and when it is missed, it becomes a malignant disease and is difficult to treatment. Melanoma is one of the most common diseases of geriatric skin disease and initially has a similar modality with the nevus. In order to overcome this problem, we attempted to perform a feature analysis in order to attempt automatic detection of melanoma-like lesions. In this paper, one is first order analysis using information of pixels in radiomic feature. The other is a gray-level co-occurrence matrix and a gray level run length matrix, which are feature extraction methods for converting image information into a matrix. The features were extracted through these analyses. And classification is implemented by SVM.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF

A Method of Analyzing ECG to Diagnose Heart Abnormality utilizing SVM and DWT

  • Shdefat, Ahmed;Joo, Moonil;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.

Study on the Diagnosis of Abnormal Prosthetic Valve

  • Lee, Hyuk-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • The two major problems related to the blood flow in replaced prosthetic heart valve are thrombus formation and hemolysis. Reliability of prosthetic valve is very important because its failure means the death of patient. There are many factors affecting the valvular failures and their representatives are mechanical failure and thrombosis, so early noninvasive detection is essentially required. The purpose of this study is to detect the various thromboses formation by using acoustic signal acquisition and its spectral analysis on the frequency domain. We made the thrombosis models using Polydimethylsiloxane (PDMS) and they are thrombosis model on the disc, around the sewing ring and fibrous tissue growth across the orifice of valve. Using microphone and amplifier, we measured the acoustic signal from the prosthetic valve, which is attached to the pulsatile mock circulation system. A/D converter sampled the acoustic signal and the spectral analysis is the main algorithm for obtaining spectrum. Then the spectrum of normal and 5 different kinds of abnormal valve were obtained. Each spectrum waveform shows a primary and secondary peak. The secondary peak changes according to the thrombus model. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. Acoustic measurement has been used as a noninvasive diagnostic tool and is thought to be a good method for detecting possible mechanical failure or thrombus.

Nondestructive Internal Defects Evaluation for Pear Using NIR/VIS Transmittance Spectroscopy

  • Ryu, D.S.;Noh, S.H.;Hwnag, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Internal defects such as browning of the flesh and blackening and rot of the ovary of pear can be easily developed because of the inadequate environmental conditions during the storage and distribution of fruit. The quality assurance system for the agricultural product is to be settled in Korea. All defected agricultural products should be excluded prior to the distribution to enhance the commercial values. However, early stage on-line defect detection of agricultural product is very difficult and even more difficult in a case of the internal defects. The goal of this research is to develop a system that can detect and classify internal defects of agricultural produce on-line using VIS/NIR transmittance spectroscopy. And Shingo pear, which is one of the famous species of Korean pear, was used for the experiment. Soft independence modeling of class analogy (SIMCA) algorithm was employed to analyze the transmittance spectroscopic data qualitatively. On-line classification system was constructed and classification model was developed and validated. As a result, the correct classification rate (CCR) using the developed classification model was 96.1 %.

  • PDF

Development of ResNet-based WBC Classification Algorithm Using Super-pixel Image Segmentation

  • Lee, Kyu-Man;Kang, Soon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.

Design and Implementation of Efficient Adaptive RED Router Suffer Management Algorithm (Efficient Adaptive RED라우터 버퍼 관리 알고리즘 디자인과 구현)

  • Lee, Jong-Hyun;Lim, Hye-Young;Huh, Eui-Nam;Hwang, Jun;Kim, Young-Chan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.208-210
    • /
    • 2003
  • RED(Random Early Detection) 라우터를 성공적으로 배치하기 위해서는 RED 알고리즘을 구성하는 각 파라미터를 적절히 조절할 수 있어야 한다. 특히 다수의 TCP 연결이 하나의 라우터를 공유하는 네트워크 병목구간에서는 그 중요성이 한층 강조된다. 그러나 RED가 TD 라우터와 같은 네트워크 퍼포먼스를 유지하면서 ICP 커넥션 간 페어니스(fairness)를 향상시키기 위해서는, 네트워크 상황에 따라 다수의 컨트롤 파라미터 값을 적절하게 설정해줘야만 한다. 문제는 다양한 네트워크 환경에서 효과적으로 RED 알고리즘이 동작하기 위해 파라미터를 설정하는 것이 매우 어렵다는 것이다. 본 논문에서는 네트워크 상황에 따라 동적으로 RED 파라미터를 조절하면서 빠르게 안정적인 상태로 적응하는 진보된 RED 알고리즘인 ea-RED(Efficient Adaptive RED)를 디자인하고 구현하여 알고리즘의 효율성을 확인한다.

  • PDF