Journal of the Institute of Convergence Signal Processing
/
v.15
no.2
/
pp.24-29
/
2014
Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.
Similien Ndagijimana;Ignace Habimana Kabano;Emmanuel Masabo;Jean Marie Ntaganda
Journal of Preventive Medicine and Public Health
/
v.56
no.1
/
pp.41-49
/
2023
Objectives: Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children. Methods: The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen. Results: The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status. Conclusions: Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.
Koo, Jung Mo;Na, Sung Dae;Cho, Jin-Ho;Kim, Myoung Nam
Journal of Korea Multimedia Society
/
v.21
no.2
/
pp.130-137
/
2018
Recently, human life is getting longer due to change of living environment and development of medical technology, and silver medical technology has been in the limelight. Geriatric skin disease is difficult to detect early, and when it is missed, it becomes a malignant disease and is difficult to treatment. Melanoma is one of the most common diseases of geriatric skin disease and initially has a similar modality with the nevus. In order to overcome this problem, we attempted to perform a feature analysis in order to attempt automatic detection of melanoma-like lesions. In this paper, one is first order analysis using information of pixels in radiomic feature. The other is a gray-level co-occurrence matrix and a gray level run length matrix, which are feature extraction methods for converting image information into a matrix. The features were extracted through these analyses. And classification is implemented by SVM.
The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.
Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.
Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.
Journal of the Institute of Convergence Signal Processing
/
v.14
no.1
/
pp.1-5
/
2013
The two major problems related to the blood flow in replaced prosthetic heart valve are thrombus formation and hemolysis. Reliability of prosthetic valve is very important because its failure means the death of patient. There are many factors affecting the valvular failures and their representatives are mechanical failure and thrombosis, so early noninvasive detection is essentially required. The purpose of this study is to detect the various thromboses formation by using acoustic signal acquisition and its spectral analysis on the frequency domain. We made the thrombosis models using Polydimethylsiloxane (PDMS) and they are thrombosis model on the disc, around the sewing ring and fibrous tissue growth across the orifice of valve. Using microphone and amplifier, we measured the acoustic signal from the prosthetic valve, which is attached to the pulsatile mock circulation system. A/D converter sampled the acoustic signal and the spectral analysis is the main algorithm for obtaining spectrum. Then the spectrum of normal and 5 different kinds of abnormal valve were obtained. Each spectrum waveform shows a primary and secondary peak. The secondary peak changes according to the thrombus model. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. Acoustic measurement has been used as a noninvasive diagnostic tool and is thought to be a good method for detecting possible mechanical failure or thrombus.
Internal defects such as browning of the flesh and blackening and rot of the ovary of pear can be easily developed because of the inadequate environmental conditions during the storage and distribution of fruit. The quality assurance system for the agricultural product is to be settled in Korea. All defected agricultural products should be excluded prior to the distribution to enhance the commercial values. However, early stage on-line defect detection of agricultural product is very difficult and even more difficult in a case of the internal defects. The goal of this research is to develop a system that can detect and classify internal defects of agricultural produce on-line using VIS/NIR transmittance spectroscopy. And Shingo pear, which is one of the famous species of Korean pear, was used for the experiment. Soft independence modeling of class analogy (SIMCA) algorithm was employed to analyze the transmittance spectroscopic data qualitatively. On-line classification system was constructed and classification model was developed and validated. As a result, the correct classification rate (CCR) using the developed classification model was 96.1 %.
Journal of the Korea Society of Computer and Information
/
v.23
no.4
/
pp.147-153
/
2018
In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.
Proceedings of the Korean Information Science Society Conference
/
2003.04d
/
pp.208-210
/
2003
RED(Random Early Detection) 라우터를 성공적으로 배치하기 위해서는 RED 알고리즘을 구성하는 각 파라미터를 적절히 조절할 수 있어야 한다. 특히 다수의 TCP 연결이 하나의 라우터를 공유하는 네트워크 병목구간에서는 그 중요성이 한층 강조된다. 그러나 RED가 TD 라우터와 같은 네트워크 퍼포먼스를 유지하면서 ICP 커넥션 간 페어니스(fairness)를 향상시키기 위해서는, 네트워크 상황에 따라 다수의 컨트롤 파라미터 값을 적절하게 설정해줘야만 한다. 문제는 다양한 네트워크 환경에서 효과적으로 RED 알고리즘이 동작하기 위해 파라미터를 설정하는 것이 매우 어렵다는 것이다. 본 논문에서는 네트워크 상황에 따라 동적으로 RED 파라미터를 조절하면서 빠르게 안정적인 상태로 적응하는 진보된 RED 알고리즘인 ea-RED(Efficient Adaptive RED)를 디자인하고 구현하여 알고리즘의 효율성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.