• Title/Summary/Keyword: Early Compressive Strength

Search Result 652, Processing Time 0.033 seconds

The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete (저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성)

  • 문한영;신화철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Long-Term Performance of Safety Related Concrete Structures in Nuclear Power Plants (원전 콘크리트 구조물의 장기내구성능 평가)

  • Yoon, Eui-Sik;Paek, Yong-Lak;Lim, Jae-Ho;Chung, Yun-Suk;Choi, Kang-Ryong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.237-240
    • /
    • 2006
  • Almost 30 years have been passed since the first nuclear power plant was operated in Korea. Many studies have been actively conducted from the early 1990's in order to develop the deterioration management system for concrete structures in NPPs(Nuclear Power Plants) accordingly. Base on these studies, a systematic deterioration management program has developed and operated since 1997. According to this program, systematic inspections to provide database and evaluation were periodically performed (every overhaul at intervals of $12{\sim}18$ month and every five years). Accumulated deterioration database was usefully utilized for the NPP PSR (Periodic Safety Review). In this paper, the long-term durability and integrity of Kori 1,2 NPP concrete structures which are the oldest ones in Korea were evaluated based on the precise inspection database and regulatory inspection results including compressive strength, depth of carbonation, amount of chlorination and spontaneous potential of reinforcing bar, etc. It was noted that Kori 1,2 NPP structures have not any serious durability problems.

  • PDF

Hydration Characteristics of Cement Containing Zeolite (제올라이트가 함유된 시멘트의 수화 특성)

  • Lee, Chang-Yong;Kim, Youn Cheol;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.423-428
    • /
    • 2011
  • Hydration characteristics of cement containing zeolite mined at Daepo in Gyeongbuk province were studied for use as a mineral admixture. The cement paste containing zeolite was characterized by the measurement of heat evolution, XRD, EDS, nitrogen adsorption and mercury intrusion porosimetry. The cement paste containing zeolite exhibited tendencies toward acceleration of paste setting and promotion of cement hydration with the increase of zeolite content. The flow of mortar containing zeolite strongly reduced with increase of zeolite content. Compressive strength of the mortar containing zeolite increased very rapidly at an early age in comparison with plain mortar. These results would be related to aluminum species escaped from zeolite particles during the alkali dealumination of zeolite by the hydration process of cement.

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

Microstructural evolution of primary solid particles and mechanical properties of AI-Si alloys by rheocasting (AI-Si계 리오캐스팅합금의 초정입자의 응고조직 및 기계적성질)

  • Lee, J.I.;Lee, H.I.;Ryoo, Y.H.;Kim, D.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.244-252
    • /
    • 1994
  • The morphological changes of primary solid particles as a fuction of process time on Al-Si alloys during semi-solid state processing with a shear rate of 200s were studied. In hypereutectic Al-15.5wt%Si alloy, it was observed that primary Si crystals are fragmented in the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. In quaternary Al-12.5wt%Si-2.9wt%Cu-0.7wt%Mg alloy system, it was observed both primary silicon and ${\alpha}$-alumunum particles. Microstructural evolution of primary Si crystals was similar to that of the hypereutectic Al-Si alloy but equiaxed ${\alpha}$-Al dendrites are broken into nearly spherical at the early stage of shearing and later stage of the isothermal shearing ${\alpha}$- Al particles are slightly coarsoned by Ostwald ripening. Mechanical properties of Al-Si-Cu-Mg alloy were compared to those from other processes (squeeze casting and gravity casting). After T6 heat treatment, comparable values of hardness were obtained while slightly lower compressive strength values were observed in rheocast alloy. The elongation, on the other hand, exhibited significant increasement of 15% over gravity cast alloy.

  • PDF

Properties of High Performance Concrete Corresponding to the Replacement Ratio of the Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 고성능 콘크리트의 특성분석)

  • Kim, Seoung-Hwan;Son, Ho-Jung;Pei, Chang-Chun;Han, Min-Cheol;Baek, Joo-Hyun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.669-672
    • /
    • 2008
  • To analyze possibility for high performance concrete that massively displaces blast furnace slag, this study analyzed the characteristics of concrete by blast furnace slag displacement rate changes, and the results are summarized as follows. Firstly, as for fresh concrete characteristics, flow tended to increase and air amount decreased with increase in blast furnace slag displacement rate, and settling time was shown delayed. As for hardened concrete characteristics, in conditions where blast furnace slag displacement rate increased up to 50%, the compressive strength decreased below OPC at early age, however at age 28 days, its level was no less than that of OPC, and as for temperature rise by simple insulation, it decreased as displacement rate increased at early stage of hydration, but in the latter stage, hydration progress slowed down and hydration heat increased.

  • PDF

Strength Properties of Mortar Mixed with Accelerator for Freeze Protection in Constant and Variable Temperature Condition (정온 및 변온조건하에서 내한촉진제를 혼합한 모르터의 강도특성)

  • Kim, Young-Jin;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.942-948
    • /
    • 2002
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and the strength development may be delayed. One of the solution methods to resolve these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerator for freeze protection. In this study we Investigate the effect on the strength development of cement mortar using accelerator for freeze protection with the variable curing condition. As the result of this study, the mortar using accelerator for freeze protection show continuously the strength development in curing condition of -5$^{\circ}C$. And the compressive strength under variable temperature condition was higher than constant temperature condition in same maturity.

Effect of Anhydrite on the Mechanical and Durability Properties of High Volume Slag Concrete (무수석고 함량이 고로슬래그 미분말을 대량 활용한 콘크리트 특성에 미치는 영향)

  • Moon, Gyu-Don;Kim, Joo-Hyung;Cho, Young-Keun;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • High volume slag concrete is attracting new attention and are thought to have promising potential for industrial applications, partly due to the climate debate, but especially due to their very low heat of hydration and their good durability in chemically aggressive environments. However, High volume slag concretes tend to have slower strength development especially. In this study, the effect of anhydrite ($CaSO_4$) on the mechanical and durability performance of high volume slag concrete were investigated. The main variables were anhydrite contents (0, 4, 6, 8, 10%). Test results show that 4~8% anhydrite concrete have improved engineering properties (hydration, compressive strength, shrinkage, creep, carbonation) as control concrete at early ages.

Pilot Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 수화열 균열제어로서 초지연 콘크리트 활용에 관한 예비실험)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Lee, Jae-Sam;Kim, Hyun-Seob;Lee, Byeong-Hoon;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.37-41
    • /
    • 2008
  • According to the recent rapidly increasing that construction works are gradually Manhattanized mainly the grand scaled residential buildings, the foundation of the building that is related to safety is increasing for building as a grand scaled mat concrete. Because mat concrete can not be simultaneously placing of concrete in a great quantity due to the circumstance at the field, the inequal deformation of the tensile stress that according to the time lag of hydration heat between the upper layer and the lower layer is affecting as a cause that is the possibility of crack occurrence by increasing. Accordingly, this research checked the efficiency of super retard concrete in applying real structures, and we implemented the preparatory experiment to settle up the inequal deformation of the tensile stress substantially that is according to the time lag of placement between the upper layer and the lower layer by controlling the setting time using the super retarding agent. As the result of test, the more target of delay time lengthened, the more fluidity increased and air content indicated a little differences. There was from 2 to 10 hours between the standard curing and the outside curing at the setting time and in case of calculating the rate of mixing at real structure is required that mix promotion, increasing the amount of mixing, by setting up the curing temperature. The super retard concrete showed the result that in compressive strength, early-age strength was smaller than normal concrete whereas it was same or more figures from at the aging 28days because of the super retarding agent.

  • PDF