• Title/Summary/Keyword: Eardo

Search Result 8, Processing Time 0.024 seconds

Hull Form and Layouts of 740-ton Replacement Vessel for R/V Eardo of KIOST: Ship Design and SMRs (740톤급 종합해양연구선 이어도호 대체선 선형 및 설계 특성)

  • Park, Cheong Kee;Park, Dong-Won;Lee, Gun Chang;Kim, Young Jun;Min, Young Ki
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • R/V EARDO, commissioned in 1992, has successfully carried out ocean research campaigns in Korean jurisdictional and adjacent waters, including continental margins and coastal zones within the Korean Exclusive Economic Zone (EEZ), for 29 years. However, it will soon be reaching the end of its useful service life. A replacement for R/V EARDO is urgently needed to ensure the safety of vessel itself and its crews, and efficient ship operation and maintenance, as well as to meet modern scientific mission requirements (SMRs). Basic specifications for a replacement ship have been devised and reviewed over the past nine months. A test of the proposed hull form was also performed. The total tonnage of the proposed vessel is approximately 740 tons, and the overall length and width are 62.0 and 11.6 m, respectively. The new ship will thus be 73% larger than the current R/V EARDO; in particular, the research workspace will be 4.4 times larger. The major design priorities are the propulsion system, efficiency of radiated noise and vibration control, and the dynamic positioning system. An environmentally friendly emission system, meeting International Maritime Organization (IMO) Tier III regulations, will be installed in the third exhaust pipe. Various wet and dry lab spaces as well as 32 different scientific instruments have also been considered in the ship design.

Geotechnical Characterization of the Eardo Seabed for Offshore Pile Foundation Design (해양말뚝 기초설계를 위한 이어도 해저지반의 특성화)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Kown, O-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.141-155
    • /
    • 1999
  • Korea Ocean Research & Development Institute(KORDI) conducted an offshore geotechnical investigation for the Eardo Ocean Research Station with the help of the Fugro International Limited at a site location approximately 152 km away from Mara Island, Korea. The primary purpose of the geotechnical investigation was to obtain information on soil and foundation conditions, and to develop foundation design data for a fixed offshore observation platform. This paper discussed the details of the geotechnical investigation and the foundation design recommendations for the Ocean Research Station. Clear recommendations were proposed for the foundation type of driven pile considering the existing soil conditions.

  • PDF

Mixing of Sea Waters in the Northern Part of the East China Sea in Summer (하계 동중국해 북부 해역에서의 해수 혼합)

  • Jang, Sung-Tae;Lee, Jae-Hak;Hong, Chang-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.390-399
    • /
    • 2007
  • In order to investigate the mixing of sea waters on the continental shelf in the northern East China Sea, Korea Ocean Research and Development Institute conducted hydrographic surveys including turbulence measurements using the R/V Eardo in August 2005 and August 2006. The turbulent kinetic energy dissipation rates based on velocity shear measurements are estimated to be $10^{-7}{\sim}10^{4}$, $10^{-7}{\sim}10^{-6}$, and $10^{-7}$ W/kg in the surface layer, bottom layer, and lower thermocline, respectively. The data sets suggest that surface layer water is being constantly mixed by winds. High dissipation rate in the lower thermocline seems to be caused by internal waves. The bottom layer with high dissipation rate also shows high turbidity, indicating the effect of tidal stirring turbulence. The vertical eddy diffusivities are $10^{-3}{\sim}10^{-2}m^2/s$ near the bottom, and these high values appear to arise from both the low stability and high turbulent mixing.

Temporal and Spatial Variation of Nutrient Elements in Surface Seawater off the West Coast of Korea (황해 중동부 해역 표층수에서 영양염 원소의 시공간적 분포)

  • Cha, Hyun-Ju;Kim, Jun-Young;Koh, Chul-Hwan;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Temporal and spatial variations of nutrient elements (ammonia, nitrate, nitrite, phosphate and silicate) in surface seawater off the west coast of Korea were investigated during three periods of field survey aboard R/V Eardo of KORDI (May 1995 and June 1996) and a patrol vessel of the National Maritime Police (November 1995). In general, the concentrations of nutrient elements were lowest in June and highest in November except for ammonia that showed the lowest concentration in May and the highest in November. The results tell us that the development of thermocline and tidal front restricts riverine and benthic supply of nutrient elements to surface waters in June in the offshore regions of the study area which become nutrient-depleted due to phytoplankton bloom in spring. In late fall (November) the level of nutrient concentrations of the surface waters of the study area become high due to vigorous vertical mixing within the water column, which supplies nutrient-enriched bottom water to the surface waters.

  • PDF

Observing System Experiments Using KLAPS and 3DVAR for the Upper-Air Observations over the South and West sea during ProbeX-2009 (KLAPS와 3DVAR를 이용한 ProbeX-2009 남·서해상 고층관측자료의 관측 시스템 실험 연구)

  • Hwang, Yoon-Jeong;Ha, Jong-Chul;Kim, Yeon-Hee;Kim, Ki-Hoon;Jeon, Eun-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Numerical prediction capability has been improved over the decades, but progress of prediction for high-impact weather (HIW) was unsatisfactory. One reason of low predictability for HIW is lack of observation data. The National Institute of Meteorological Research (NIMR) has been performed observation program for improvement of predictability, and reduction in social and economical cost for HIW. As part of this observation program, summer intensive observation program (ProbeX-2009) was performed at the observation-gap areas from 25 August to 6 September 2009. Sounding observations using radiosonde were conducted in the Gisang2000 research vessel (R/V) from the Korea Meteorological Administration (KMA) over the West Sea and the Eardo R/V from the Korea Ocean Research and Development Institute (KORDI) over the South Sea. Observation System Experiment (OSE) is carried out to examine the effect of ProbeX-2009 data. OSEs using Korea Local Analysis and Prediction System (KLAPS) and Weather Research and Forecasting (WRF) Model are conducted to investigate the predictability for a short time forecast. And, OSEs using WRF/3DVAR system and WRF forecast model are conducted to study the predictability for an extended time. Control experiment (K_CTL and CNTL) used only GTS observation and experiment (K_EXP and SWEXP) used ProbeX-2009 data from two system are performed. ETS for 3hr accumulated rainfall simulated by KLAPS-WRF shows that K_EXP is higher than K_CTL. Also, ETS for 12hr accumulated rainfall of SWEXP from 3DVAR-WRF is higher than CNTL. The results indicate that observation over the ocean has positive impact on HIW prediction.

Chemical Characteristics and Deposition of Aerosols in the Cheju-Korea Straits (제주-대한해협 해역에서 에어로졸의 화학적 특성과 침적)

  • Suk Hyun, Kim;Hyunmi, Lee;Deok-Soo, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.297-310
    • /
    • 2022
  • To understand the chemical composition of aerosols in the Cheju-Korea Straits and their contribution to the ocean by deposition, aerosol samples were collected on board R/V Eardo from November 1997 to May 1999. The average concentrations of Al, NO3-, non-sea-salt (nss)-SO42-, and NH4+ in aerosols were 2.19, 5.59, 6.16 and 2.08 ㎍ m-3, respectively. The Al concentration in the high yellow dust period was about 100 times higher than that in the non-yellow dust period. The concentration ratio of NO3-/nss-SO42- ranged between 0.47 and 1.5, indicating that the aerosols in the Cheju-Korea Straits are under the effects of NOx and SOx emitted from China, Korea and Japan. The equivalent concentration ratio of [NH4+]/[nss-SO42-+ NO3-] with the average of 0.58±0.29 indicates that nss-SO42- and NO3- are not neutralized by NH4+. A high activity concentration of 210Pb with 1.13-1.23 mBq m-3 was observed during the high yellow dust period, indicating that 210Pb is easily adsorbed in the yellow dust originating from the continent of Asia. The distribution of 7Be and NH4+ concentrations showed a strong negative linear correlation during the low yellow dust period, April 1998. The total mineral dust flux in the Cheju-Korea Straits was estimated to be 1.21×106 tons yr-1, accounting for about 12% of the annual sediment discharge via the Nakdong River. The combined annual deposition of NH4+ and NO3- was 0.103 mole N m-2 yr-1 was estimated to support 4% of the annual primary productivity in the East China Sea.

Ship's Hull Fouling Management and In-Water Cleaning Techniques (선체부착생물관리와 수중제거기술)

  • Hyun, Bonggil;Jang, Pung-Guk;Shin, Kyoungsoon;Kang, Jung-Hoon;Jang, Min-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.785-795
    • /
    • 2018
  • The International Maritime Organization (IMO) has recognized the risk of hull fouling and announced '2011 Guidelines for the control and management of ship's biofouling to minimize the transfer of invasive aquatic species'and is planning international regulations to enforce them in the future. In this study, to effectively respond to future international regulation, we introduce the case of leading countries related to management of hull fouling and also investigate environmental risk assessment techniques for in-water cleaning. Australia and New Zealand, the leading countries in hull fouling management, have established hull fouling regulations through biological and chemical risk assessment based on in-water cleaning scenarios. Most European countries without their government regulation have been found to perform in-water cleaning in accordance with the IMO's hull fouling regulations. In the Republic of Korea, there is no domestic law for hull fouling organisms, and only approximately 17 species of marine ecological disturbance organisms, are designated and managed under the Marine Ecosystem Law. Since in-water cleaning is accompanied by diffusion of alien species and release of chemical substances into aquatic environments, results from biological as well as chemical risk assessment are performed separately, and then evaluation of in-water cleaning permission is judged by combining these two results. Biological risk assessment created 40 codes of in-water cleaning scenarios, and calculated Risk Priority Number (RPN) scores based on key factors that affect intrusion of alien species during in-water cleaning. Chemical risk assessment was performed using the MAMPEC (Marine Antifoulant Model to Predict Environmental Concentrations), to determine PEC and PNEC values based on copper concentration released during in-water cleaning. Finally, if the PEC/PNEC ratio is >1, it means that chemical risk is high. Based on the assumption that the R/V EARDO ship performs in-water cleaning at Busan's Gamcheon Port, biological risk was estimated to be low due to the RPN value was <10,000, but the PEC/PNEC ratio was higher than 1, it was evaluated as impossible for in-water cleaning. Therefore, it will be necessary for the Republic of Korea to develop the in-water cleaning technology by referring to the case of leading countries and to establish domestic law of ship's hull fouling management, suitable for domestic harbors.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.