• Title/Summary/Keyword: EYE MOVEMENT

Search Result 552, Processing Time 0.018 seconds

The Prevalence and Characteristics of Positional Obstructive Sleep Apnea

  • Kim, Cheon-Sik;Lee, Yong-Seok;Cho, Cheon-Ung;Pae, Sang-Ho;Lee, Sang-Ahm
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • Patients with obstructive sleep apnea (OSA) often have more aggravated symptoms in the supine position. We tried to investigate the clinical characteristics and the predictive factors for positional OSA. Polysomnographic data were reviewed for OSA patients (apnea hypopnea index, $AHI{\geq}5$) from April, 2008 to April, 2011 at the Asan Medical Center. Clinical data, comorbid medical condition data and questionnaires (SF-36, MFI-20, ESS, BDI, STAI) were assessed. All patients were classified into two groups: positional patients (PP) group and non-positional patients (NPP) group. PP was defined as a patient who had the AHI in the supine position was at least twice as high as that in the lateral position. The body position of patients was confirmed by sleep position sensor and video monitor. All patients had at least 30 minutes of positional and 30 minutes of non-positional sleep. We compared clinical, medical, polysomnographic data, and questionnaire results between two (PP and NPP) groups and investigated predictive factors for the PP group using binary logistic regression analysis. In total, 371 patients were investigated. 265 (71.4%) was categorized as PP group and 106 (28.5%) as NPP group. The mean age ($mean{\pm}SD$) was higher in the PP group ($52.4{\pm}9.8$) than in the NPP group ($49.5{\pm}11.9$) (p<0.05). Comparison of sleep parameters between the PP and the NPP group showed that the PP group had significantly lower BMI (PP: $26.1{\pm}3.2kg/m^2$; NPP: $27.8{\pm}4.3kg/m^2$, p<0.001), neck circumference (PP: $39.7{\pm}2.8cm$; NPP: $41.5{\pm}3.7cm$, p<0.001) and hypertension rate (PP: n=89/265 (33.5%); NPP: n=48/106 (45.2%), p=0.0240). In the PP group, the percentage of deep sleep (PP: $8.7{\pm}8.1%$; NPP: $5.6{\pm}7.0%$, P=0.001) and rapid eye movement (REM) (PP: $17.5{\pm}6.1%$; NPP: $14.0{\pm}6.9%$, p<0.001) were significantly higher whereas the percentage of light sleep (stage N1) was significantly lower than the NPP group (PP: $30.4{\pm}12.3$; NPP: $44.5{\pm}20.8%$, p<0.001). During the sleep, the AHI in the supine position (PP: $48.6{\pm}19.5$; NPP: $60.5{\pm}22.6$, p<0.001) and in the non-supine position (PP: $9.4{\pm}8.9$; NPP: $48.4{\pm}24.8$, p=<0.001) were significantly lower and the minimal arterial oxygen saturation in non-REM sleep was significantly higher in the PP group (PP: $80.3{\pm}7.6$; NPP: $75.1{\pm}9.9$, p=<0.001). There were no significant differences in all questionnaires including quality of life. The results of the binary logistic regression analysis showed that age, the amount of REM sleep(%) and AHI were significant predictive factors for positional OSA. The significant predictive factors for positional OSA were older age, higher percentage of REM and lower AHI. The questionnaire results were not significantly different between the two groups.

  • PDF

A Study on the Interactive Narrative - Focusing on the analysis of VR animation <Wolves in the Walls> (인터랙티브 내러티브에 관한 연구 - VR 애니메이션 <Wolves in the Walls>의 분석을 중심으로)

  • Zhuang Sheng
    • Trans-
    • /
    • v.15
    • /
    • pp.25-56
    • /
    • 2023
  • VR is a dynamic image simulation technology with very high information density. Among them, spatial depth, temporality, and realism bring an unprecedented sense of immersion to the experience. However, due to its high information density, the information contained in it is very easy to be manipulated, creating an illusion of objectivity. Users need guidance to help them interpret the high density of dynamic image information. Just like setting up navigation interfaces and interactivity in games, interactivity in virtual reality is a way to interpret virtual content. At present, domestic research on VR content is mainly focused on technology exploration and visual aesthetic experience. However, there is still a lack of research on interactive storytelling design, which is an important part of VR content creation. In order to explore a better interactive storytelling model in virtual reality content, this paper analyzes the interactive storytelling features of the VR animated version of <Wolves in the walls> through the methods of literature review and case study. We find that the following rules can be followed when creating VR content: 1. the VR environment should fully utilize the advantages of free movement for users, and users should not be viewed as mere observers. The user's sense of presence should be fully considered when designing interaction modules. Break down the "fourth wall" to encourage audience interaction in the virtual reality environment, and make the hot media of VR "cool". 2.Provide developer-driven narrative in the early stages of the work so that users are not confused about the ambiguous world situation when they first enter a virtual environment with a high degree of freedom. 1.Unlike some games that guide users through text, you can guide them through a more natural interactive approach that adds natural dialog between the user and story characters (NPC). Also, since gaze guidance is an important part of story progression, you should set up spatial scene user gaze guidance elements within it. For example, you can provide eye-following cues, motion cues, language cues, and more. By analyzing the interactive storytelling features and innovations of the VR animation <Wolves in the walls>, I hope to summarize the main elements of interactive storytelling from its content. Based on this, I hope to explore how to better showcase interactive storytelling in virtual reality content and provide thoughts on future VR content creation.