• Title/Summary/Keyword: EW-7197

Search Result 2, Processing Time 0.018 seconds

EW-7197 Attenuates the Progression of Diabetic Nephropathy in db/db Mice through Suppression of Fibrogenesis and Inflammation

  • Kyung Bong Ha;Weerapon Sangartit;Ah Reum Jeong;Eun Soo Lee;Hong Min Kim;Soyeon Shim;Upa Kukongviriyapan;Dae-Kee Kim;Eun Young Lee;Choon Hee Chung
    • Endocrinology and Metabolism
    • /
    • v.37 no.1
    • /
    • pp.96-111
    • /
    • 2022
  • Background Diabetic nephropathy (DN) is characterized by albuminuria and accumulation of extracellular matrix (ECM) in kidney. Transforming growth factor-β (TGF-β) plays a central role in promoting ECM accumulation. We aimed to examine the effects of EW-7197, an inhibitor of TGF-β type 1 receptor kinase (ALK5), in retarding the progression of DN, both in vivo, using a diabetic mouse model (db/db mice), and in vitro, in podocytes and mesangial cells. Methods In vivo study: 8-week-old db/db mice were orally administered EW-7197 at a dose of 5 or 20 mg/kg/day for 10 weeks. Metabolic parameters and renal function were monitored. Glomerular histomorphology and renal protein expression were evaluated by histochemical staining and Western blot analyses, respectively. In vitro study: DN was induced by high glucose (30 mM) in podocytes and TGF-β (2 ng/mL) in mesangial cells. Cells were treated with EW-7197 (500 nM) for 24 hours and the mechanism associated with the attenuation of DN was investigated. Results Enhanced albuminuria and glomerular morphohistological changes were observed in db/db compared to that of the nondiabetic (db/m) mice. These alterations were associated with the activation of the TGF-β signaling pathway. Treatment with EW-7197 significantly inhibited TGF-β signaling, inflammation, apoptosis, reactive oxygen species, and endoplasmic reticulum stress in diabetic mice and renal cells. Conclusion EW-7197 exhibits renoprotective effect in DN. EW-7197 alleviates renal fibrosis and inflammation in diabetes by inhibiting downstream TGF-β signaling, thereby retarding the progression of DN. Our study supports EW-7197 as a therapeutically beneficial compound to treat DN.

Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy

  • Sheen, Yhun Yhong;Kim, Min-Jin;Park, Sang-A;Park, So-Yeon;Nam, Jeong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.323-331
    • /
    • 2013
  • TGF-${\beta}$ pathway is being extensively evaluated as a potential therapeutic target. The transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway has the dual role in both tumor suppression and tumor promotion. To design cancer therapeutics successfully, it is important to understand TGF-${\beta}$ related functional contexts. This review discusses the molecular mechanism of the TGF-${\beta}$ pathway and describes the different ways of tumor suppression and promotion by TGF-${\beta}$. In the last part of the review, the data on targeting TGF-${\beta}$ pathway for cancer treatment is assessed. The TGF-${\beta}$ inhibitors in pre-clinical studies, and Phase I and II clinical trials are updated.