• Title/Summary/Keyword: EW

Search Result 281, Processing Time 0.031 seconds

Effects of Electrolyzed Water and Chlorinated Water on Sensory and Microbiological Characteristics of Lettuce (양상추의 관능적 및 미생물학적 특성에 전해수 및 염소수가 미치는 영향)

  • Lee Seung-Hyun;Jang Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.589-597
    • /
    • 2004
  • This study was conducted to investigate the effects of various kinds of electrolyzed and chlorinated waters on the sensory and microbiological qualities of fresh-cut lettuce and to determine the most suitable electrolyzed water for the vegetable dishes, without heat treatment, at institutional foodservices. The sensory evaluation resulted in higher scores on the 1st-day of storage for the EW-1 (diaphragm type 1) and EW-3 (non-diaphragm type) compared to that for EW-2 (diaphragm type 2), with regard to their appearance, discoloration, texture, taste and overall acceptability characteristics. However, over time, EW-3 ranked highest, with a score of 8.00 (very like), on the 4th-day of storage, which maintained the highest level up to the 7th-day of storage, at which time the score was 7.00 (fairly like). The CW (chlorinated Water) had a significantly lower score, due to the smell of chlorine, although there was no concern with relation to chlorine residue from the electrolyzed waters. Microbial examinations of the total plate count revealed that immersing lettuce into EW-3 brought about l/3,000 to 1/30,000 reductions in the microbial counts of the TW treatment or untreated samples for up to seven days of storage. The CW treatment gave a 1/10 reduction in the microbial counts compared with the TW (tap water) treatment. The coliform bacterial counts also showed similar trends to those of the total plate count values. With regards to the psychotropic bacterial count, EW-3 was able to result in as much as a 1/30,000 reduction in the initial counts. As vegetable dishes, such as salad, can not be heat-sterilized, the utilization of EW-3 for the preparation of vegetable dishes without heat treatment will be an excellent choice to improve the critical control point in production state as a new effective means for sanitizing management.

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water (이산화염소수와 전해수를 이용한 식중독균의 살균효과)

  • Lee, Hye-Rin;Kim, Su-Jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.232-237
    • /
    • 2022
  • The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

A Research on the SILS System for Design and Analysis of Non-Communication Electronic Warfare Weapons based on the Engineering M&S Technique (공학급 M&S 기반 비통신 전자전무기체계 설계 분석 지원을 위한 SILS 시스템 연구)

  • Shin, Dongcho;Shin, Wookheon;Kim, Taehyun;Lee, Chiho;Jeong, Unseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2021
  • We research and develop a SW-based virtual testing product that can be commonly used in the design/development of non-communication EW systems before the production of physical test products. Through this study, we have developed M&S technology to improve the accuracy of EW weapon system analysis/design and to verify and predict the performance of EW equipment, and to develop proven engineering module models and model base systems. It proposes a technology to build an EW M&S framework that can flexibly link/integrate various engineering/engage-level EW heterogeneous M&S systems.

A Study on Electrostatic Discharging in Ultrapure and Electrolyzed Waters Using Kelvin's Thunderstorm Effect (캘빈방전 효과를 이용한 초순수 및 전해이온수의 정전기 방전 연구)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Choi, Donghyeon;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • Despite the increasing importance of manufacturing and application R&D for ultrapure deionized water and electrolyzed ion water, various and systematic studies have not been conducted until now. In this study, the electrostatic discharge (ESD) behavior of electrolyzed ion water using a proton exchange membrane(PEM) was evaluated according to the type, flow rate, and bubble of electrolyzed ion water. In addition, by observing that Oxidation Reduction Potential (ORP) value returns to the unique value of electrolyzed ion water after electrostatic discharge, the possibility of two types of ions participating in electrostatic discharge ((H2O)n+ (assumed)) and ions for maintaining the characteristics of electrolyzed water could be inferred. In order to confirm the chemical structure and characteristics of the cations, in-depth research related to water molecular orbital energy or band gap should be followed.

Understanding Behaviors of Electrolyzed Water in Terms of Its Molecular Orbitals for Controlling Electrostatic Phenomenon in EUV Cleaning (EUV 세정에서 정전기 제어를 위한 전해이온수 거동의 분자궤도 이해)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Kim, Jae-young;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.6-13
    • /
    • 2022
  • The electrostatic phenomenon seriously issued in extreme ultraviolet semiconductor cleaning was studied in junction with molecular dynamic aspect. It was understood that two lone pairs of electrons in water molecule were subtly different each other in molecular orbital symmetry, existed as two states of large energy difference, and became basis for water clustering through hydron bonds. It was deduced that when hydrogen bond formed by lone pair of higher energy state was broken, two types of [H2O]+ and [H2O]- ions would be instantaneously generated, or that lone pair of higher energy state experiencing reactions such as friction with Teflon surface could cause electrostatic generation. It was specifically observed that, in case of electrolyzed cathode water, negative electrostatic charges by electrons were overlapped with negative oxidation reduction potentials without mutual reaction. Therefore, it seemed that negative electrostatic development could be minimized in cathode water by mutual repulsion of electrons and [OH]- ions, which would be providing excellences on extreme ultraviolet cleaning and electrostatic control as well.

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Anti-Drone Technology for Drone Threat Response: Current Status and Future Directions

  • Jinwoo Jeong;Isaac Sim;Sangbom Yun;Junghyun Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.115-127
    • /
    • 2023
  • In this paper, we have undertaken a comprehensive investigation into the current state of anti-drone technology due to the increasing concerns and risks associated with the widespread use of drones. We carefully analyze anti-drone technology, dividing it into three crucial domains: detection, identification, and neutralization methods. This categorization enables us to delve into intricate technical details, highlighting the diverse techniques used to counter evolving drone threats. Additionally, we explore the legal and regulatory aspects of implementing anti-drone technology. Our research also envisions potential directions for advancing and evolving anti-drone tech to ensure its effectiveness in an ever-changing threat environment.

Development of Antagonistic Microorganism for Biological Control of Dollar Spot of Turfgrass (잔디 동전마름병의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Shim, Taek-Su;Jung, Woo-Cheol;Do, Ki-Seok;Shim, Gyu-Yul;Lee, Jae-Ho;Choi, Kee-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • Dollar spot caused by Sclerotinia homeocarpa is one of major diseases in putting greens. Microorganisms antagonistic to S. homeocarpa, a pathogen of dollar spot, were primarily screened through in vitro tests, including dual culture method and triple layer agar diffusion method. In vivo tests were also conducted to select the best candidate for a biocontrol microorganism, using pot experiment. Bacillus subtilis EW42-1 and Trichoderma harziaum GBF-0208 were finally selected as biocontrol agents against dollar spot. Relative Performance Index(RPI) was used as a criterion of selecting potential biocontrol agents. B. subtilis EW42-1 and T. harzianum GBF-0208 showed resistance to several agrochemicals mainly used in a golf course. B. subtilis EW42-1 and T. harzianum GBF-0208 suppressed effectively the disease progress of dollar spot like synthetic fungicide tebuconazole in the nursery where dollar spot had seriously occurred. B. subtilis EW42-1 and T. harzianum GBF-0208 have a potential to be biocontrol agents for the control of dollar spot.

Analysis of Deception Jamming Effects on FM Radio based Passive Radar (FM 라디오 기반 수동형 레이다 기만재밍 효과 분석)

  • Song, Kyuha;Kwak, Hyungyu;Kim, Sanhae;Jeong, Inhwan;Lee, Jonghwan;Lee, Byeongnam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.239-250
    • /
    • 2022
  • In this paper, we analyze the performance of an FM radio based passive radar in the presence of deception jamming such as false-target generation. To do this, we examine the effects of applying the deception jamming signal to the passive radar through the derivation of the construction of the amplitude-range-Doppler(ARD) plot. The analysis results show that applying the deception jamming signal with the low power similar to the target echo signal generates false targets at positions set by the jamming variables compared to the real target position in the ARD plot. Also, it is possible to induce the jamming effect so that only false targets are detected by selecting appropriate jamming power. Simulations are included to verify the theoretical results and to discuss on the effectiveness of the deception jamming on the FM radio based passive radar.

Transmission Modeling and Verification for the Inverse Estimation of Electronic Warfare Threats (전자전 위협체 역추적을 위한 송수신 모델링 및 검증)

  • Park, So Ryoung;Jeong, Hoe Chang;Kwon, Jae Wan;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.112-123
    • /
    • 2017
  • Research for the inverse estimation of RF threats and the efficient electronic attack based on the parameters of the electronic information has been active in the electronic warfare (EW) situations. In this paper, an EW transmission simulator is constructed from the modeling of radar threats, EW receivers, and propagation environments with the collected electronic information in order to verify the performance of the inverse estimation algorithm in various and practical EW situations. In simulation results, we show that the range tracking error and angle tracking error are produced within ten meters and one degree, respectively. And also, we show that the changing relations between the angle tracking error and the parameters of the monopulse angle tracking radar such as the beamwidth and squint angle in simulation results correspond with those in the theoretical modeling. Accordingly, the constructed EW simulator can be used to observe the modifying characteristics of the electronic information in transmission environments, and then, to evaluate the performance of the inverse estimation system in various EW situations.