• 제목/요약/키워드: EVAPORATION

검색결과 3,553건 처리시간 0.028초

인공지반에서 금잔디의 증발산량 예측에 관한 연구 -퍼라이트 배합토에서 Makkink의 일사법을 이용하여- (A Study on the Estimation of Zoysia matrella's Evaporation Using Makkink Model)

  • 김도경;황지환
    • 한국조경학회지
    • /
    • 제29권1호
    • /
    • pp.161-167
    • /
    • 2001
  • The purpose of this study is to find out the difference of Zoysia matrella's evaporation in between 100 percent soil and mixed soil with 50 percent of perlite to create green spaces on the artificial ground. It is believed that the weight against the artificial ground will be reduced, provided the vegetation is possible in the circumstance of the mixed sol with 50 percent of perlite. The study employed a modified Makkink's model by Iwasa who had developed the model for estimating Zoysia matrella's evaporation in the natural ground using the Makkink's formula in 1997 at Chiba University, Japan. The parameter of Makkink's formula is the solar radiation. For that reason, the Makkink's formula is simple and easy to measure the parameter and has a high utility. If the outcomes from mixed soil are close to modified Makkinks formula, the modified Makkink's formula will be applied to estimate in the artificial ground with mixed soil with 50 percent of perlite. Weather observation and actual amount of evaporation of Zoysia matrella have been measured, and the relation between weather condition and actual amount of evaporation had been also investigated. In line with this, we found out that there is a relevant relationship between daily average temperature, the modified Makkink's model by Iwasa, and the actual amount of evaporation. As the results of the experiment, the outcomes from mixed soil with 50 percent of perlite have very high relation to 100 percent soil. In addition, mixed soil has more adhesion with water than natural soil. However, it needs to be adequately maintained in terms of fertilization and damage from disease and harmful insects until the gras fastens its roots into the soil. By using mixed soil with 50 percent of perlite, the load from soil on the artificial ground can be reduced. The study on the growth of the grass throughout the plant vegetation and the actual amount of evaporation in the mixed soil with 50 percent of perlite should be performed in the future.

  • PDF

감압증발장치와 해수담수화의 조건 (Conditions of Desalination with Reduced Pressure Evaporation Device)

  • 지호;윤성열;이승원;문덕수;이호생;김현주
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권1호
    • /
    • pp.8-12
    • /
    • 2014
  • 감압증발장치는 압력을 감소시켜 물의 끓는점을 낮춰주는 원리를 이용한 것으로 온도를 높이는데 필요한 에너지 소모량을 줄일 수 있는 원리로 사용되고 있다. 즉, 온도와 압력의 상관관계 원리를 이용한 것이다. 감압증발장치를 이용하여 해수의 온도별 포화증기압을 적용하여 증발량 실험을 한 결과 $80^{\circ}C$, -40 cmHg의 경우가 가장 많은 증발량을 나타내었으며, 해수의 농도에 따른 인자 실험의 결과에서는 농도가 짙을수록 증발량이 많이 발생하는 것을 알 수 있었다. 또한 압력에 따른 인자 실험의 결과 낮은 압력에서 증발량이 증가하는 것을 알 수 있었다. 결과적으로 증발량의 중요인자는 농도가 큰 부분으로 작용하였으며 다음 요인은 온도로 나타났으며 마지막 요인으로 압력을 들 수 있었다. 본 실험을 통하여 감압증발장치를 이용한 담수화 조건을 확인 할 수 있었다.

증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구 (Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating)

  • 정재인;정우철;손영호;이득진;박성렬
    • 한국진공학회지
    • /
    • 제9권3호
    • /
    • pp.207-215
    • /
    • 2000
  • 진공증착 및 이온플레이팅 방법을 이용하여 냉간 압연된 강판상에 알루미늄피막을 형성시킨 후, 증발율 및 증기분포 변화를 측정하고 각 증착방법에서의 증발율에 따른 증기분포 변화를 비교 및 검토하였다. 본 실험에서의 이온플레이팅은 증발원 근처에 이온화 전극을 설치하는 방법으로 고전류 아크방전을 유도하여 $10^{-4}$ Torr 이하에서도 기존의 이온플레이팅에 비해 높은 이온화율을 얻을 수 있는 아크방전 유도형 이온플레이팅(Arc-induced ion Plating; AIIP) 방법을 이용하였다. 전자빔을 이용하면서 알루미나 크루시블을 사용하여 알루미늄을 증발시킬 경우 분당 2.0 $\mu\textrm{m}$이상의 높은 증발율을 얻을 수 있었으며, 이온플레이팅의 경우 이온화된 증기의 상호작용에 따른 산란 효과로 증발율이 다소 낮아짐을 알 수 있었다. $cos^{n/\phi}$로 이루어지는 증기분포의 결정인자(n)의 값이 진공증착의 경우는 1에 근접하는 것으로 나타났고 AIIP의 경우는 2 또는 그보다 더 큰 값으로 이루어지는 것을 확인하였다. 이로부터 이온플레이팅의 경우 이온화율 또는 기판 바이어스 전압의 효과가 다른 조건에 비해 증기분포에 더 크게 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

EVAPORATION DATA STOCHASTIC GENERATION FOR KING FAHAD DAM LAKE IN BISHAH, SAUDI ARABIA

  • Abdulmohsen A. Al-Shaikh
    • Water Engineering Research
    • /
    • 제2권4호
    • /
    • pp.209-218
    • /
    • 2001
  • Generation of evaporation data generally assists in planning, operation, and management of reservoirs and other water works. Annual and monthly evaporation series were generated for King Fahad Dam Lake in Bishah, Saudi Arabia. Data was gathered for period of 22 years. Tests of homogeneity and normality were conducted and results showed that data was homogeneous and normally distributed. For generating annual series, an Autoregressive first order model AR(1) was used and for monthly evaporation series method of fragments was used. Fifty replicates for annual series, and fifty replicates for each month series, each with 22 values length, were generated. Performance of the models was evaluated by comparing the statistical parameters of the generated series with those of the historical data. Annual and monthly models were found to be satisfactory in preserving the statistical parameters of the historical series. About 89% of the tested values of the considered parameters were within the assigned confidence limits

  • PDF

물과 나노유체 액적의 고온 벽면에서의 증발 특성에 관한 연구 (A Study on the Evaporation Characteristics of Water or Nanofluid Droplets on a Heated Surface)

  • 김진한;이경재;정선욱;강보선
    • 한국분무공학회지
    • /
    • 제21권4호
    • /
    • pp.177-183
    • /
    • 2016
  • In this study, the evaporation characteristics of water or nanofluid droplets on a heated surface was investigated by visualization of the evaporation process and evaluation of the heat transfer coefficient using the droplet temperature measured. The evaporation characteristics was compared between water and nanofluid droplets and the effects of the mass ratio of nanofluid and the inclination of heated surface were analyzed. The heat transfer rate of nanofluid droplet was higher than that of water droplet. The heat transfer coefficient was increased with the increase of the mass ratio of nanofluid. The effect of the inclination of heated surface was much higher than that of fluid type used, which indicates that the inclination of heated surface should be considered as one of influential parameters in the spray cooling process.

액적의 증발에 미치는 수증기 농도의 영향 (Effects of Water Vapor Concentration on a Droplet Evaporation)

  • 김용우;이명준;하종률;정성식
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • An experimental study has been conducted to clarify the effect of vapor on droplet evaporation. Droplets of water, ethanol, n-hexadecane and n-heptane were exposed in air stream. Temperature, pressure, and flow velocity in the ambient air are 470K, 1 atm, and 2m/s, respectively. Measurements are carried out for the wide range of water vapor concentration$(0%\sim40%)$. To obtain the time histories of droplet diameter, suspended droplet in hot and humid air stream was synchronized with a back flash light, and enlarged droplet images were taken on a CCD camera. With the vapor concentration increasing, the evaporation rate constant of water droplet decrease slightly and the droplet of ethanol and n-heptane increase actively. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

진공 증발에 의한 폐윤활유 속의 수분 제거에 관한 실험적 연구 (An Experimental Study on the Dewatering from the Waste Lubrication Oil by Vacuum Evaporation)

  • 정상현;박성제;홍원석;김용진;구경회
    • 에너지공학
    • /
    • 제12권3호
    • /
    • pp.216-222
    • /
    • 2003
  • 실험실 규모의 진공 증발 수분 제거 시스템을 이용하여, 압력, 윤활유의 온도, 초기 수분농도 및 윤활유 분사 노즐의 형태 등 폐윤활유 속에 포함된 수분 제거 성능에 영향을 미치는 각각의 운전 변수들에 대한 실험적인 연구를 수행하였다. 연구의 결과 압력 및 폐윤활유 온도의 증가는 수분 제거 성능에 매우 중요한 변수임을 확인하였으며, 또한 진공 증발실로 폐윤활유를 분사하기 위한 노즐의 형태는 다공성 매질의 노즐 형상인 경우가 가장 우수한 수분 증발 성능을 나타내었다.

첨가제로 아세트산 나트륨-3수화물을 함유한 물 액적의 증발 특성 (Evaporation Characteristics of a Water Droplet Containing Sodium Acetate Trihydrate as an Additive)

  • 박재만;신창섭
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.61-68
    • /
    • 2004
  • The evaporation phenomena of waterr droplet which has sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) as a fire suppression additive were studied. Solutions of sodium salt up to 50% and heated stainless-steel surface were used in the experiment. The evaporation process was recorded using a charge-coupled-device camera at 120 frames per second. The average evaporation rate of the sodium acetate trihydrate soluation was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid film and change of surface tension. The variation of liquied film diameter was measured by time and it was increased by the hot surface temperature increase.