• 제목/요약/키워드: EVAPORATION

검색결과 3,557건 처리시간 0.025초

공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성 (Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation)

  • 지인걸;한규석;오재희;고태경
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

수평원관 내 CO2 R-22 및 R-134a의 증발열전달 특성에 관한 실험적 연구 (Evaporation Heat Transfer Characteristics of CO2 R-22 and R-134a in a Horizontal Smooth Tube)

  • 윤린;황준현;최영돈;김용찬
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.911-918
    • /
    • 2002
  • Evaporation heat transfer coefficients of carbon dioxide($CO_2$), R-22, and R-134a in a horizontal smooth tube were measured and analyzed as a function of heat flux, mass flux, and evaporating temperature. The experiments were carried out by varying heat flux from 10 to 20 $kW/m^2$, mass flux from 170 to 340 $kg/m^2s$, and saturation temperatures of 5 and $10^{\circ}C$. It was found that the heat transfer coefficient of $CO_2$ decreased with a rise of quality due to an earlier liquid-film dryout as compared to R-22 and R-134a. Averaged heat transfer coefficients of $CO_2$ were 22-63% higher than those of R-22 and R-134a at all test conditions. The effects of mass flux and heat flux on averaged heat transfer coefficients were much greater in $CO_2$ than in R-22 and R-134a. When comparing $CO_2$ test results with the correlations in the literature, the existing models yielded large deviations at medium and high qualities. Therefore, a generalized correlation for $CO_2$evaporation heat transfer needs to be developed by including the effects of dryout phenomenon.

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

Polyester 상에서 Sputter 증착되는 고 밀도 은경 박막의 물리적 특성에 미치는 공정조건 변화의 효과 (The Effect of Various Process Conditions on the Physical Properties of Dense Silver Films, Prepared by Using Sputter Deposition on Polyester Substrate)

  • 리의재;황태수
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.707-714
    • /
    • 1999
  • 형광등으로 사용되는 전기 에너지의 40%를 절약할 수 있는 방법으로서 그 반사값을 특수 은 반사박막으로 처리하여 고효율 및 내구성을 갖는 기술이 최근에 알려지고 있다. 이 박막들은 sputtering법을 이용한 것으로 주로 미국에서 생산되어지고 있다. 한편. evaporation 법으로 제작된 은 박막들은 일반적으로 반사효율에는 별문제가 없으나 부착력이 떨어지는 단점이 있다. 우리는 수년간 polyester를 기판으로 하고 몇가지 PVB 방법을 동원하여 고 반사율 및 부착력을 갖는 은경 박막을 확보하기 위해 연구를 해왔다. 그 결과, evaporation 법으로 제작된 은 박막은 96.4%의 반사율을 보이나 부착력은 $12 Kg/\textrm{cm}^2$에 불과함을 확인하였고. sputter 법으로 제작한 시편들의 반사율은 96.3 %로 비슷하였으나 부착력이 /$20 Kg\textrm{cm}^2$로 거의 두배로 뛰어올라 sputter법의 공정조건이 그 결과박막들의 물리적 특성에 미치는 긍정적 영향을 확인할 수 있었다. X-선 회절 분석결과 sputter의 경우에 (111)면이 우선성장함을 알 수 있었고, 시편의 단면으로부터 관찰된 치밀한 columnar 구조가 부착력을 향상시키고 있음이 확인되었다.

  • PDF

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

친환경 골판지 상자 제조를 위한 재활용 폐지 섬유의 물리적·환경적 특성 평가 (Fiber Analysis and Environmental Assessment of Recycled Waste paper for Eco-friendly Corrugated Box Manufacture)

  • 박정윤;이태주;김형진;김진무
    • 펄프종이기술
    • /
    • 제45권4호
    • /
    • pp.65-74
    • /
    • 2013
  • In the manufacture of corrugated box, the fibrous raw materials are mainly consisted of recycled papers, such as KOCC(Korean Old Corrugated Container), kraft sack, and AOCC(American Old Corrugated Container). Among these recycled waste paper, the proportion of KOCC is relatively higher than others in fibrous raw materials. Generally, KOCC shows some poor fiber properties and contains hazardous heavy metal sources. Therefore, it is to evaluate the property of recycled paper sources for eco-friendly corrugated box manufacture. In this study, the physical and mechanical properties of 3 kinds of recycled fibers and their mixed stocks were analyzed. The environmental assessment was also evaluated by analyzing the 4 representative heavy metal contents and evaporation residues in waste papers. As the results, KOCC showed the poorest fiber qualities and had the highest heavy metal contents and evaporation residues among the recycled fibers. Finally, the mechanical strength properties were increased by decreasing KOCC proportion of mixed stock conditions. In addition, the heavy metal contents and evaporation residues were also decreased by increasing recycled AOCC and kraft sack proportion.

Effects of substrate temperature on the performance of $Cu_2ZnSnSe_4$ thin film solar cells fabricated by co-evaporation technique

  • 정성훈;안세진;윤재호;곽지혜;조아라;윤경훈;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.400-400
    • /
    • 2009
  • Despite the success of Cu(In,Ga)$Se_2$ (CIGS) based PV technology now emerging in several industrial initiatives, concerns about the cost of In and Ga are often expressed. It is believed that the cost of those elements will eventually limit the cost reduction of this technology. One candidate to replace CIGS is $Cu_2ZnSnSe_4$ (CZTSe), fabricated by co-evaporation technique. Co-evaporation technique will be one of the best methods to control film composition. This type of absorber derives from the $CuInSe^2$ chalcopyrite structure by substituting half of the indium atoms with zinc and other half with tin. Energy bandgap of this material has been reported to range from 0.8eV for selenide to 1.5eV for the sulfide and large coefficient in the order of $10^{14}cm^{-1}$, which means large possibility of commercial production of the most suitable absorber by using the CZTSe film. In this work, Effects of substrate temperature of $Cu_2ZnSnSe_4$ absorber layer on the performance of thin films solar cells were investigated. We reported on some of the absorber properties and device results.

  • PDF

Comparison of Preparation Methods for the Quantification of Ginsenosides in Raw Korean Ginseng

  • Hong, Hee-Do;Sim, Eun-Mi;Kim, Kyung-Tack;Rho, Jeong-Hae;Rhee, Young-Kyung;Cho, Chang-Won
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.565-569
    • /
    • 2009
  • This study was conducted to evaluate the effects of different preparation methods on the recovery and quantification of ginsenosides in raw Korean ginseng (Panax ginseng C.A. Meyer). Eight major ginsenosides ($Rb_1$, $Rb_2$, $Rb_3$, Rc, Rd, Re, Rf, and $Rg_1$) were analyzed by high performance liquid chromatography (HPLC), after which the recovery and repeatability of the extraction of those ginsenosides using 3 different preparation methods were compared [A. direct extraction (DE) method, hot MeOH extraction/evaporation/direct dissolution; B. solid phase extraction (SPE) method, hot MeOH extraction/evaporation/dissolution/$C_{18}$ cartridge adsorption/MeOH elution; C. liquid-liquid extraction (LLE) method, hot MeOH extraction/evaporation/dissolution/n-BuOH fractionation]. Use of the DE method resulted in a significantly higher recovery of total ginsenosides than other methods and a relatively clear peak resolution. Use of the SPE and LLE methods resulted in clearer peak resolution, but lower ginsenoside recovery than the DE method. The LLE method showed the lowest ginsenoside recovery and repeatability among the 3 methods. Given that the DE method employed only extraction, evaporation, and a dissolution step (avoiding complicate and time consuming purification), this technique may be an effective method for the preparation and quantification of ginsenosides from raw Korean ginseng.

수도의 증발산량 추정방법에 관한 연구 (A Study on the Method for Estimating Evapotranspiration from Paddy Fields)

  • 허재석;정하우
    • 한국농공학회지
    • /
    • 제25권2호
    • /
    • pp.86-95
    • /
    • 1983
  • Evapotranspiration is a major factor determining the water consumption in the rice fields. Therefore, realistic evapotranspiration estimates are important to the agricultural water resources planning. In Korea, however, the Blaney-Criddle formula, which was developed under the meteorological condition of western arid United States and the upland cultivation, has been widely used to estimate evapotranspiration from paddy fields. Hence, it has considered that the Blaney-Criddle formula would not be the proper method for the Korean paddy condition. The purpose of this study is to select the most appropriate and realistic method for estimating evapotranspiraion from paddy field in Korea and to derive crop coefficients using the chosen method. The results are summerized as follows. 1. Total seasonal-average evapotranspiration by the field observation was 660mm for Tongil and 621. Ornm for the Japonica variety of rice. The amount of evapotranspiration for Tongil variety was 6% larger than that of the Japonica variety. 2. There was no significant differences in the amount of evapotranspiration among early, middle and late mature varieties, that is, early 638mm, middle 627mm and late 630mm for the whole growing season. 3. The rate of peak evapotranspiration appeared at the beginning of August and was in the range of 7.7-8. Omm/day according to the different mature varieties. 4. The correlation between pan evaporation data and the calculated evapotranspiration using related meteorological data from various methods suggested such as Radiation (FAO), Hargreaves, Christiansen, Hargreaves-Christiansen, Jensen-Haise, showed high statistic significance. Therefore, it seemed to use those formulars in estimating evapotranspiration inste4 of using pan evaporation data. 5. It was concluded from the analysis of field data that the evapotranspiration estimate for Blaney-Criddle method might not be appropriate in Korea. On the other hand, Penman equation showed more accurate estimation at the flourishing stage of rice than the pan evaporation method. 6. The crop coefficients for the Penman and pan-evaporation method were obtained by graphical representation.

  • PDF

물의 상평형 그림에 대한 오해와 이해: 대기 중 물의 증발과 얼음의 승화 (Misunderstanding and Understanding of the Phase Diagram for Water: Water Evaporation and Ice Sublimation in the Atmosphere)

  • 박종윤
    • 대한화학회지
    • /
    • 제51권6호
    • /
    • pp.577-584
    • /
    • 2007
  • 본 연구에서는 대기 중에서 물의 증발이나 얼음의 승화와 같은 물의 상태 변화를 물의 상평형 그 림을 이용하여 어떻게 설명할 수 있는지를 제시하고자 하였다. 물의 상평형 그림은 1성분계의 상평형을 나타 낸 것이므로 원칙적으로 물만 존재하는 경우에 사용할 수 있는 것이다. 공기가 존재하는 경우에는 액체 물 또 는 고체 얼음이 있으면 항상 공기 중에 수증기가 공존하게 되며, 이 때 물 또는 얼음의 압력은 공기 중 수증 기의 부분 압력과 일치하지 않기 때문에 상평형 그림에 하나의 점으로 그 상태를 나타낼 수 없다. 그러나 공 기가 존재하는 경우에도 포화 수증기압은 물만 존재하는 경우와 거의 차이가 없으므로 상평형 그림의 증기 압 력 곡선과 승화 곡선을 이용하여 대기 중에서 물의 증발과 얼음의 승화를 설명할 수 있음을 논의하였다.