• 제목/요약/키워드: EVA (Ethylene Vinyl Acetate)

Search Result 148, Processing Time 0.027 seconds

Estimation of Rheological Properties of Highly Concentrated Polymer Bonded Explosive Simulant by Microstructure Analysis (미세구조 해석을 통한 고농축 복합화약 시뮬란트의 유변물성 예측)

  • Lee, Sangmook;Hong, In-Kwon;Lee, Jae Wook;Shim, Jung Seob
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.225-231
    • /
    • 2014
  • The rheological properties of highly concentrated polymer bonded explosive simulant were studied by using poly(ethylene-co-vinyl acetate) with 30 and 60% vinyl acetate (VA) content as a binder, respectively. Calcium carbonate and Dechlorane, whose physical properties are similar to resarch department explosive (RDX)'s, were used as fillers. The suspensions were mixed in a batch melt mixer and it was possible to fill 75 v% at maximum. From dynamic mechanical analysis, Dechlorane showed higher interaction with binder resins than that with calcium carbonate fillers. The effects of microstructural change on the rheological properties of the suspensions were investigated by a plate-plate rheometer with constant shear rate and constant shear stress modes, respectively. The theoretical maximum packing fraction of EVA31/Dechlorane suspension obtained from Krieger-Dougherty equation was 70 v% and it was thought that 2000 Pa was proper shear stress condition for this melt processing.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

Crosslinking Characteristics of Ethylene Vinyl Acetate Copolymer by the Structure of Crosslinking Agents (가교제의 화학 구조에 따른 에틸렌 비닐 아세테이트 공중합체의 가교 특성 고찰)

  • Lee, Jong-Rok;Choi, Chang-Suk;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.131-136
    • /
    • 2009
  • The effect of the chemical structure of the peroxide crosslinking agent on the reactive crosslinking reaction of EVA was investigated and the physical properties of the crosslinked EVA were studied as well. It was found that peroxide with one peroxy group (perbutyl peroxide) is more effective than peroxides with two peroxy group (2,5 dimethyl 2,5 di(tert-butylperoxyl) hexane and 1,1-di(tert-buthylperoxy)-3,3,5-tri-methylcyclohexane) in melt reactive crosslinking reaction of EVA. The rate of crosslinking was increased by the use of crosslinking acceleration agent but the noticeable effect on degree of crosslinking was not found. Crosslinking caused the lowering of melt flow ability of EVA but mechanical properties were enhanced by the crosslinking of EVA.

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

A Study on Composites of Ethylene-Vinyl Acetate Copolymer and Ethylene-Propylene-Diene Rubber with Aluminum Hydroxide as a Fire Retardant

  • Lee, Yu Jun;Lee, Su Bin;Jung, Jae Young;Lee, Dam Hee;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • The composites of EVA/EPDM including aluminum trioxide (ATH) as a fire retardant were manufactured for the purpose of improving low temperature property and flame resistance in the rubbery materials. The ratio of EVA to EPDM didn't affect the flame resistance of the rubber composites. The addition of ATH resulted in increase of the flame resistance. In the evaluation of the cold resistance, the increasing EPDM content showed enhancement of cold resistance in the composites due to increasing low Tg EPDM. It was found out that tensile strengths of the composites showed a maximum value at 100 phr of ATH by reinforcing effect, but a minimum value at 200 phr of ATH owing to slippage between the flame retardant by the external stress. In the measurement of solvent resistance in tetrahydrofuran, the increasing ATH content yielded enhancement of solvent resistance by reducing swelling of the composite, and increasing EPDM content also resulted from increase of the solvent resistance by reduction of polarizability as well as increase of crosslink in the composites.

Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer (에너지함유 열가소성탄성체 적용을 위한 아지드화 폴리부타디엔/에틸렌-비닐아세테이트 공중합체 블렌드 제조)

  • Yoon, Sang Won;Choi, Myung Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Soon Kil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.282-288
    • /
    • 2015
  • A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with $Br_2$ and subsequent nucleophilic substitution reaction of the brominated PBD with $NaN_3$. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.

Combustive Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Composites Including Magnesium Hydroxide (저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트에 수산화마그네슘을 첨가한 복합체의 연소성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-75
    • /
    • 2011
  • It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) composite by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower flashover possibility. It is supposed that the combustive properties in the composites decreased due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower total heat release rate (THR) and lower CO production rate than those of virgin polymer. As the magnesium hydroxide content increases, the total smoke release (THR) and smoke extinction area (SEA) decreased.

Effect of glass beads on dispersion properties of EVA/MWCNT foams (유리비드가 EVA/MWCNT 발포체의 분산특성에 미치는 영향)

  • Kim, Taeyoon;Lee, Seunghyun;Ching, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.68-73
    • /
    • 2018
  • In this study, conductive EVA foams including multi-wall carbon nanotubes (MWCNT), glass beads were prepared. The electrical conductivity and physical properties of the foams were confirmed with varying amount of MWCNT, mixing time, and amount of glass beads. The electrical conductivity increased with the amount of MWCNT. Dispersity of MWCNT in EVA foams were improved with glass beads. It can be suggested that conductive EVA foams can be successfully prepared with improved dispersity of MWCNT in ethylene-vinyl acetate by using glass beads.

Effect of Polymers on the Freezing and Thawing Resistance of Hardened Cement Mortar (시멘트 경화체의 동결융저항성에 미치는 Polymer의 영향)

  • 이선우;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.509-516
    • /
    • 1991
  • The effect of various polymers on the freeze-thaw resistance of hardened cement mortar was investigated. For this study, styrene butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA) were used to prepare cement mortar specimen, and then freeze-thaw experiment was carried out. By adding SBR adn EVA to the specimen, the freeze-thaw resistance of specimens was improved, but when PVA was added to the specimen, its freeze-thaw resistance was lowered. Particularly, the specimens which were added 5, 10% of SBR and 5% of EVA showed excellent freeze-thaw resistance in the salt environment.

  • PDF

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.