Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.225

Estimation of Rheological Properties of Highly Concentrated Polymer Bonded Explosive Simulant by Microstructure Analysis  

Lee, Sangmook (Division of Chemical Engineering, Dankook University)
Hong, In-Kwon (Division of Chemical Engineering, Dankook University)
Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
Shim, Jung Seob (Agency for Defense Development)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 225-231 More about this Journal
Abstract
The rheological properties of highly concentrated polymer bonded explosive simulant were studied by using poly(ethylene-co-vinyl acetate) with 30 and 60% vinyl acetate (VA) content as a binder, respectively. Calcium carbonate and Dechlorane, whose physical properties are similar to resarch department explosive (RDX)'s, were used as fillers. The suspensions were mixed in a batch melt mixer and it was possible to fill 75 v% at maximum. From dynamic mechanical analysis, Dechlorane showed higher interaction with binder resins than that with calcium carbonate fillers. The effects of microstructural change on the rheological properties of the suspensions were investigated by a plate-plate rheometer with constant shear rate and constant shear stress modes, respectively. The theoretical maximum packing fraction of EVA31/Dechlorane suspension obtained from Krieger-Dougherty equation was 70 v% and it was thought that 2000 Pa was proper shear stress condition for this melt processing.
Keywords
highly concentrated; explosive; plastic bonded explosive (PBX); simulant; microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959).   DOI
2 G. N. Choi and I. M. Krieger, J. Colloid Interface Sci., 113, 101 (1986).   DOI
3 R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
4 E. J. Hinch and L. G. Leal, J. Fluid Mech., 52, 683 (1972).   DOI
5 L. E. Nielsen, J. Polym. Sci., Part A: Polym. Chem., 17, 1897 (1979).
6 T. B. Lewis and L. E. Nielsen, Trans. Soc. Rheol., 12, 421 (1968).   DOI
7 Y. W. Inn and S. Q. Wang, Langmuir, 11, 1589 (1995).   DOI
8 J. E. Stamhuis, Polym. Compos., 9, 72 (1988).   DOI
9 V. Pasanovic-Zujo, R. K. Gupta, and S. N. Bhattacharya, Rheol. Acta, 43, 99 (2004).   DOI   ScienceOn
10 K. Jang, J. W. Lee, I.-K. Hong, and S. Lee, Korea-Aust. Rheol. J., 25, 145 (2013).   DOI
11 M. A. Osman, A. Atallah, T. Schweizer, and H. C. Ottinger, J. Rheol., 48, 1167 (2004).   DOI
12 Y. Wang and M. J. Yu, Polym. Compos., 21, 111 (2000).
13 L. Sun, M. Park, R. Salovey, and J. J. Aklonis, Polym. Eng. Sci., 32, 777 (1992).   DOI
14 Y. Wang and J. J. Wang, Polym. Eng. Sci., 39, 190 (1999).   DOI
15 Y. Suetsugu and J. L. White, J. Appl. Polym. Sci., 28, 1481 (1983).   DOI   ScienceOn
16 J. F. Le Meins, P. Moldenaers, and J. Mewis, Ind. Eng. Chem. Res., 41, 6297 (2002).   DOI
17 A. J. Poslinski, M. E. Ryan, R. K. Gupta, S. G. Seshadri, and F. J. Frechette, J. Rheol., 32, 703 (1988).   DOI
18 S. Ottani, A. Valenza, and F. P. La Mantia, Rheol. Acta, 27, 172 (1988).   DOI
19 I. M. Krieger, Adv. Colloid Interface Sci., 3, 111 (1972).   DOI   ScienceOn
20 A. Einstein, Ann. Phys. (Leipzig), 19, 289 (1906).
21 A. Einstein, Ann. Phys. (Leipzig), 34, 591 (1911).
22 R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
23 H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989.
24 L. E. Nielsen, Polymer Rheology, Marcel Dekker, New York, 1977.
25 Y. Bomal and P. Godard, Polym. Eng. Sci., 36, 237 (1996).   DOI
26 K. J. Kim and J. L. White, Polym. Eng. Sci., 39, 2189 (1999).   DOI
27 M. C. S. Perera, U. S. Ishiaku, and Z. A. M. Ishak, Polym. Degrad. Stabil., 68, 393 (2000).   DOI   ScienceOn