• Title/Summary/Keyword: EV(Electric vehicle)

Search Result 343, Processing Time 0.024 seconds

Development of Bi-directional Charger With a Wide Voltage Range (넓은 전압 범위를 갖는 양방향 충전기 개발)

  • Na, Jaeho;Park, Jun-Sung;Jeon, Yujong;Shin, Wae-Gyeong;Lee, Chungyoul;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • This paper proposes a DC-DC converter that satisfies a wide output voltage of 150 V-1000 V for the battery voltage of various electric vehicles and can be controlled in both directions for the demand resource of electric vehicles. The proposed converter is a two-stage structure in which an insulated converter and a non-isolated converter are combined and operates as constant current or constant power depending on the voltage of the connected battery. Experimental results from a 20 kW prototype are provided to validate the proposed charger, and a maximum efficiency of 97% is obtained.

A Study on the Development of EV Powertrain System Simulator for Education and Training (교육훈련용 EV 동력 시스템 시뮬레이터 개발에 대한 연구)

  • Dong-June Shin
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2023
  • The biggest core task in the new modern automobile industry lies in the development of eco-friendly vehicles with the goal of 0% emissions by the EU by 2035. Accordingly, in an era where the industry is rapidly changing with electric vehicles, education and training on EV electric vehicles are urgently needed. In this study, by developing a core EV powertrain system simulator excluding the chassis platform (body, tire, etc.) used identically to existing internal combustion locomotives, Understand the EV powertrain system, including mechanical engineering, electrical engineering, and electronic engineering applications. Through this course, we intend to use it as a medium to develop engineering and convergence development capabilities.

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

A New Product Risk Model for the Electric Vehicle Industry in South Korea

  • CHU, Wujin;HONG, Yong-pyo;PARK, Wonkoo;IM, Meeja;SONG, Mee Ryoung
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.31-43
    • /
    • 2020
  • Purpose: This study examined a comprehensive model for assessing the success probability of electric vehicle (EV) commercialization in the Korean market. The study identified three risks associated with successful commercialization which were technology, social, policy, environmental, and consumer risk. Research design, methodology: The assessment of the riskiness was represented by a Bayes belief network, where the probability of success at each stage is conditioned on the outcome of the preceding stage. Probability of success in each stage is either dependent on input (i.e., investment) or external factors (i.e., air quality). Initial input stages were defined as the levels of investment in product R&D, battery technology, production facilities and battery charging facilities. Results: Reasonable levels of investment were obtained by expert opinion from industry experts. Also, a survey was carried out with 78 experts consisting of automaker engineers, managers working at EV parts manufacturers, and automobile industry researchers in government think tanks to obtain the conditional probability distributions. Conclusion: The output of the model was the likelihood of success - expressed as the probability of market acceptance - that depended on the various input values. A model is a useful tool for understanding the EV industry as a whole and explaining the likely ramifications of different investment levels.

Development of a Battery Model for Electric Vehicle Virtual Platform (전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증)

  • Kim, Sunwoo;Jo, Jongmin;Han, Jaeyoung;Kim, Sung-Soo;Cha, Hanju;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

A Study to Determine the Optimized Location for Fast Electric Vehicle Charging Station Considering Charging Demand in Seoul (서울시 전기차 충전수요를 고려한 급속충전소의 최적입지 선정 연구)

  • Ji gyu Kim;Dong min Lee;Su hwan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.57-69
    • /
    • 2022
  • Even though demand to charge EV(electric vehicles) is increasing, there are some problems to construct EV charging stations and problems from deficient them. Typical problem of EV charging stations is discordance for EV charging station location with its demand. This study investigates methods to determine the optimized location for fast EV charging stations considering charging demand in Seoul. Firstly, variables influencing on determination of determine the optimized location for fast EV charging stations were decided, and then evaluation of weights of the variables and data collection were conducted. Using the weights, location potential scores for each area-cell were calculated and optimized locations for fast EV charging stations were resulted.

Modeling and Simulation of Electric Vehicle Sharing System for Optimized Operation (전기차 카셰어링 시스템 최적화를 위한 모델링 및 시뮬레이션)

  • Seo, Yong Won
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.93-108
    • /
    • 2016
  • Electric vehicle car sharing (EV-sharing) system is noted as an eco-friendly system of transportation in global warming crisis and has been practically implemented in some cities around the world. However, methodologies to find the efficient operation conditions of EV-sharing systems reflecting a typical characteristic 'charging' have not been fully investigated yet. In the paper a generalized model has been developed to identify optimal level of infrastructure for EV-sharing system which provides the optimum operation efficiency under service level constraints. From the simulation analysis based on the developed model the relationships between the operational variables to describe EV-sharing system have been identified and optimal capacity to maximize the operational efficiency have been found. From the analysis of simulation results it has been found that increases in the number of vehicles and chargers improve the service level until certain value beyond which increasing rate and the efficiency have been reduced. From the cost-revenue analysis the optimal numbers of vehicles and chargers have been identified which maximizes the annual operational profit.

Design of Drive System for Electric Vehicle (전기자동차 구동시스템 설계)

  • 오진석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.465-470
    • /
    • 1999
  • This paper presents a design method of driving system for EV(Electric Vehicle). EV driving system consist of batteries, battery interface system and inverter. The power control circuit of the driving system is simple, since only one PWM(Pulse Width Modulation) inverter is used. These test spectrums and waveforms can be used to determine the filter component ratings as well as to compute the harmonics injected into the source. The hybrid control strategy which can reduced harmonic components. The analysis results indicate that the required capacity of the condenser can be reduced with LC filter. In this paper, the design and implementation of the proposed systems are described and some experimental results are given to show the performance of this driving system. The control strategy of the system to available inverter's power and motor's power and torque is discussed.

  • PDF