• Title/Summary/Keyword: ETA(event tree analysis)

Search Result 36, Processing Time 0.021 seconds

The Relationship between Unsafe Acts and Fall Accident of Workers Using ETA (ETA를 활용한 근로자의 불안전한 행동과 떨어짐 사고의 관계)

  • Jeong, Eunbeen;Choi, Jaewook;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2020
  • The large-scaled and high-rise construction structures in recent years have increased high place work, leading to an increase in falling accidents (hereinafter, "accidents"). The need for prediction and management of unsafe acts of workers at construction sites has been raised as unsafe acts of workers are identified as the main cause of industrial accidents. This research aims at deriving the improvement effect of unsafe acts by presenting the relationship between unsafe acts of workers and accidents at construction sites as a probability. Unsafe acts of workers were derived based on the analysis of accident cases. In addition, surveys were conducted to calculate the probability of occurrence of accidents caused by unsafe acts (hereinafter, 'accident probability'). The Event Tree Analysis (ETA) was utilized to confirm the final probability according to the combination of unsafe acts and improvement effect. The accident probability by unsafe act was found to be the highest for working after drinking (95.41%) and to be the lowest for equipment and machine utilization (65.70%). The accident probability according to a combination of unsafe acts was the highest when all of the unsafe acts were conducted (13.23%) and was the lowest when none of the unsafe acts were conducted (0.00%).

A Study on the Safety Plan for a Train Control System (열차제어시스템의 안전계획 수립에 관한 연구)

  • Kim Jong-Ki;Shin Duc-Ko;Lee Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we present a safety plan to be applied to the development of the TCS(Train Control System). The safety plan that can be applied to the life cycle of a system, from the conceptual design to the dismantlement, shows the whole process of the paper work in detail through the establishment of a goal, analysis and assessment, the verification. In this paper we study about the making a plan, the preliminary hazard analysis, the hazard identification and analysis to guarantee the safety of the TCS. The process far the verification of the system safety is divided into several steps based on the target system and the approaching method. The guarantee of the system safety and the improvement of the system reliability is fellowed by the recommendation of the international standards.

A Comparative Study on the Risk(Individual and Societal) Assessment for Surrounding Areas of Chemical Processes (화학공정 주변지역에 미치는 위험성(사회적 위험성 및 개인적 위험성) 평가방법에 관한 비교 연구)

  • 김윤화;엄성인;고재욱
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.56-63
    • /
    • 1995
  • Two methods of the numerical method of CPQRA(Chemical Process Quantitative Risk Analysis) and the manual method of IAEA(International Atomic Energy Agency) were used to estimate the individual risk and societal risk around the chemical plant. Where, the CPQRA is introduced to verify the theoritical background of the manual of international atomic energy agency. The Gaussian plume model which has a weather stability class D with velocity of 5m/s was applied to calculate dispersion of hazard material. Also, 8-point method was employed to the effects of accidents for wind distribution. Furthermore, historical record, FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) were used to estimate the probability or frequency of accidents. Eventually, the individual risk shows isorisk contour and the societal risk shows F-N curve around hazard facility, especially in chemical plants. Caulculated results, which both individual and societal risk, by using IAEA manual show simillar results to those of calculation by numerical method of CPQRA.

  • PDF

The method of risk assessment by AMEA (AMEA을 활용한 위험성평가 방법)

  • Kim, Geon-Ho;Kwon, Sang-Myeon;Lee, Kang-Bok;Kim, Yoon-Sung;Lee, Jai-Won;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.97-111
    • /
    • 2007
  • In risk assessment, there are several methods such as Safety Review, Checklist, FMEA(Failure Mode and Effect Analysis), FTA(Fault Tree Analysis), ETA (Event Tree Analysis) etc, however, the level of accident is indentified by the probability of accident and severity resulting from accident which used widely in assessing accidents and disasters. In this paper, the risk assessment method to decide the level of risk will be introduced by using severity, frequency and detection according to accident theory.

Probabilistic Risk Assessment Techniques for the Risk Analysis of Construction Projects (건설공사의 위험도분석을 위한 확률적 위험도 평가)

  • 조효남;임종권;박영빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.27-34
    • /
    • 1997
  • In this paper, systematic and comprehensive approaches are suggested for the application of quantitative PRA techniques especially for those risk events that cannot be easily evaluated quantitatively In addition, dominant risk events are identified based on their occurrence frequency assessed by both actual survey of construction site conditions and the statistical data related with the probable accidents. Practical FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) models are used for the assessment of the identified risks. When the risk events are lack of statistical data, appropriate Bayesian models incorporating engineering judgement and test results are also introduced in this paper. Moreover, a fuzzy probability technique is used for the quantitative risk assessment of those risk components which are difficult to evaluate quantitatively.

  • PDF

Human Reliability Assessment for a Installation Task of Temporary Power Cables in Construction Fields (건설현장 임시전력 배선의 가설직무에 대한 인간신뢰성 평가)

  • Kim Doo-Hyun;Lee Jong-Ho;Kim Sang-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an human reliability assessment(HRA) for a installation task of the temporary power cable in construction fields. HRA is evolved to ensure that the workers could reliably perform critical tasks such as a process of the temporary power cable. Human errors are extremely commonplace, with almost everyone committing at least some errors every day. The considerable parts of electric shock accidents in the construction field are caused by a series of human errors. Therefore it is required to analyze the human errors contained in the task causing electric shock event, the event tree analysis(ETA) is adopted in this paper, and particularly human reliability was estimated for a installation task of the temporary power cables. It was assumed that the error probabilities of the human actions may be obtained using the technique for human error rate prediction(THERP). The results show that the predominant task on reliability in the cable installation tasks is check-out tasks and the probability causing electric shock by human errors was calculated as $1.0\times10^{-9}$.

A Study on Risk Assessment for Fire Onboard a Naval Vessel (해군함정 화재 위험도 평가에 관한 연구)

  • Jeon, Gae-Ryong;Kim, Dong-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.35-42
    • /
    • 2008
  • With the huge navy projects such KDX-III, LPX, bigger and more complicated vessel constructions are being underway in navy. In this paper, considering these trends, we performed a risk analysis on the navy vessel for the fatality of soldiers on board and presented the risk level with FN curve. Assuming a fire occurs in one of the soldier bedrooms, we established event tree to visualize the possible development scenarios and calculated the fatality for each scenario. The critical condition to survive inside the bedroom was obtained through CFAST program.

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities (냉동제조 시설의 암모니아 누출사고 위험 분석)

  • Kang, Su-Jin;Lee, Ik-Mo;Moon, Jin-Young;Chon, Young-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

The Risk Analysis for the Rail Transport of Explosives (폭약류의 철도수송에 따른 리스크 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 2011
  • This study presented quantitative risk analysis in case of transporting explosive materials by railway. Accident types were classified into accidents of in station and in transit. And the study presented an initial value of accident frequency through derailment accident and crushing one according to each type, and drew the results of accident frequency through event tree analysis. Damage impact evaluation used TNT equivalent method and probit analysis method. As the result of risk evaluation, railway transportation of explosive materials passing through areas which are high in population density is appeared to be able to cause a large number of personnel injury when occurring accidents. Specially, the accident of explosive transportation combined with petroleum was forecasted as easily resulting in large explosive accident. Consequently, there is a necessity to reduce consequences by decreasing passage through areas where are high in population density, and take measures for lessening the risks in case of transporting dangerous explosive materials.

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.