• Title/Summary/Keyword: EST Analysis

Search Result 268, Processing Time 0.027 seconds

Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops (박과작물의 유연관계 분석을 통한 수박 EST-SSR 마커의 종간 적용성 검정)

  • Kim, Hyeogjun;Yeo, Sang-Seok;Han, Dong-Yeop;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.93-105
    • /
    • 2015
  • This study was performed to analyze genetic relationships of the four major cucurbitaceous crops including watermelon, melon, cucumber, and squash/pumpkin. Among 120 EST-SSR primer sets selected from the International Cucurbit Genomics Initiative (ICuGI) database, PCR was successful for 51 (49.17%) primer sets and 49 (40.8%) primer sets showed polymorphisms among eight Cucurbitaceae accessions. A total of 382 allele-specific PCR bands were produced by 49 EST-SSR primers from 24 Cucurbitaceae accessions and used for analysis of pairwise similarity and dendrogram construction. Assessment of the genetic relationships resulted in similarity indexes ranging from 0.01 to 0.85. In the dendrogram, 24 Cucurbitaceae accessions were classified into two major groups (Clade I and II) and 8 subgroups. Clade I comprised two subgroups, Clade I-1 for watermelon accessions [I-1a and I-1b-2: three wild-type watermelons (Citrullus lanatus var. citroides Mats. & Nakai), I-1b-1: six watermelon cultivars (Citrullus lanatus var. vulgaris S chrad.)] a nd C lade I -2 for melon and cucumber accessions [I-2a-1 : 4 melon cultivars(Cucumis melo var. cantalupensis Naudin.), I-2a-2: oriental melon cultivars (Cucumis melo var. conomon Makino.), and I-2b: five cucumber cultivars (Cucumis sativus L.)]. Squash and pumpkin accessions composed Clade II {II-1: two squash/ pumpkin cultivars [Cucurbita moschata (Duch. ex Lam.)/Duch. & Poir. and Cucurbita maxima Duch.] and II-2: two squash/pumpkin cultivars, Cucurbita pepo L./Cucurbita ficifolia Bouche.}. These results were in accordance with previously reported classification of Cucurbitaceae species, indicating that watermelon EST-SSRs show a high level of marker transferability and should be useful for genetic study in other cucurbit crops.

An FCA-based Solution for Ontology Mediation

  • Cure, Olivier;Jeansoulin, Robert
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.90-108
    • /
    • 2009
  • In this paper, we present an ontology mediation solution based on the methods frequently used in Formal Concept Analysis. Our approach of mediation is based on the existence of instances associated to two source ontologies, then we can generate concepts in a new ontology if and only if they share the same extent. Hence our approach creates a merged ontology which captures the knowledge of these two source ontologies. The main contributions of this work are (i) to enable the creation of concepts not originally in the source ontologies, (ii) to propose a solution to label these emerging concepts and finally (iii) to optimize the resulting ontology by eliminating redundant or non pertinent concepts. Another contribution of this work is to emphasize that several forms of mediated ontology can be defined based on the relaxation of certain criteria produced from our method. The solution that we propose for tackling these issues is an automatic solution, meaning that it does not require the intervention of the end-user, excepting for the definition of the common set of ontology instances.

Development of SNP Molecular Marker for Red-fleshed Color Identification of Peach Genetic Resources (복숭아 유전자원의 적색 과육 판별 SNP 분자표지 개발)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang Hee;Jun, Ji Hae;Chung, Kyeong Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Various colors of fruit skin and flesh are the most popular commercial criteria for peach classification. In order to breed new red-fleshed peach cultivar, many cross seedlings and generations should be maintained. Therefore it is necessary to develop early selection markers to screen seedlings with target traits to increase breeding efficiency. For the comparison of transcription profiles in peach cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red-fleshed peach cultivar, 'Josanghyeoldo' and white-fleshed peach cultivar, 'Mibaekdo' were analyzed by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the two cultivars were selected for nucleotide sequence determination and homology searches. Putative single nucleotide polymorphisms (SNP) were screened from peach EST contigs by high resolution melting (HRM) analysis displayed specific difference between 8 red-fleshed peach cultivars and 24 white-fleshed peach cultivars. All 72 pairs of SNPs were discriminated and the HRM profiles of amplicons were established. In the study reported here, the development of SNP markers for distinguishing between red and white fleshed peach cultivars by HRM analysis offers the opportunity to use DNA markers. This SNP marker could be useful for peach marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in peach cultivars.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.

Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

  • Kim, Jung Eun;Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.275-286
    • /
    • 2014
  • To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.

Development of EST-SSR Markers for Evaluation of Genetic Diversity and Population Structure in Finger Millet (Eleusine coracana (L.) Gaertn.)

  • Lee, Myung Chul;Choi, Yu-Mi;Hyun, Do-Yoon;Lee, Sukyeung;Kim, Jin-Hee;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.105-105
    • /
    • 2018
  • Finger millet, Eleusine coracana Gaertn., is more nutritious than other cereals and millets and widely cultivate in tropical regions of the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In recent years, microsatellites have become the most used markers for studying population genetic diversity. In present study, genetic diversity and structure of different populations of finger millet from Africa and South Asia was examined at molecular level using newly developed EST-Simple Sequence Repeat (EST-SSR) markers using a total of 1,927 ESTs of Eleusine coracana available in the NCBI database. In total, 46 primers produced 292 alleles in a size range of 100-500 bp and mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.372 and 1.04, respectively. 46 primers showed polymorphism and 21 primers were identified as having a PIC value above 0.5. Principal coordinates analysis and the dendrogram constructed out of combined data of both markers showed grouping of finger millet accessions to their respective area of collection. The 156 accessions was classified into four groups, such as three groups of Africa collection and one group of Asia. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  • PDF

Rithy Panh's Practices on Archive Images and Methods of Historiography in La France est notre patrie (리티 판의 다큐멘터리 <우리의 모국 프랑스>에 나타난 아카이브 활용 양상과 역사서술 방식)

  • Yoo, Jisu Klaire
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.209-221
    • /
    • 2019
  • A found-footage film La France est notre patrie is a documentary, in which archive images are juxtaposed with intertitles, non-diegetic music and foley, by borrowing an audiovisual strategy of silent films. The filmmaker Rithy Panh has excavated the images, which had been taken during the same period as the film history of the end of the 19th and early 20th centuries in Southeast Asia and Africa under French colonial rule. This paper examines the filmmaker's methods of historiography when utilizing archive images in order to represent the past by referring to Walter Benjamin's concept of historical montage and dialectical image. As the analysis illustrates the singularity of constructive methods, which include multi-layer viewpoints and montage styles of compilation and collage, it reveals how La France est notre patrie elicits the essay film modes through its self-reflexivity, leads audience to the threshold of critical thinking about time and history and creates a discourse of counter-memory.

Genetic Diversity of Finger Millet (Eleusine coracana (L.) Gaertn.) Landraces Based on EST-SSR

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Seong-Hoon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.46-46
    • /
    • 2020
  • Finger millet is more nutritious than other and millets and widely cultivate in tropical regions of the world. Furthermore, it is more tolerant against biotic and abiotic stresses such as pest, drought and salt. For this reason, finger millet is one of the putative crops to introduce and cultivate on reclaimed land and prepare the global climate exchange in Korea. In present study, genetic diversity and structure of different populations of finger millet from Africa and South Asia was examined at molecular level using newly developed EST-Simple Sequence Repeat (EST-SSR) markers. In total, 46 primers produced 292 alleles in a size range of 100-500 bp and mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.372 and 1.04, respectively. 46 primers showed polymorphism and 21 primers were identified as having a PIC value above 0.5. Principal coordinates analysis and the dendrogram constructed out of combined data of both markers showed grouping of finger millet accessions to their respective area of collection. The 156 accessions were more classified into four groups, such as three groups of Africa collection and one group of Asia. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  • PDF

EST-based Survey of Gene Expression in Seven Tissue Types from the Abalone Haliotis discus hannai

  • Park, Eun-Mi;Nam, Bo-Hye;Kim, Young-Ok;Kong, Hee-Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Kong, In-Soo;Choi, Tae-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.119-126
    • /
    • 2007
  • The analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and the development of resources for functional genomics. To analyze the transcriptome of the abalone Haliotis discus hannai, we conducted EST analysis using seven cDNA libraries made from gill, gut, hepatopancreas, skin, muscle, testis, and ovary. Redundant ESTs were assembled into overlapping contiguous sequences using the assembly program ICAtools. We found that the total 1,393 ESTs formed 135 clusters and 951 singletons, indicating that the overall redundancy of the library was 22%. Of the 1,393 clones, BLAST identified 1,278 clones (91.7%) as known genes; 115 clones (8.3%) did not match any previously described gene. Based on the major functions of their encoded proteins, the identified clones were classified into 16 broad categories. Sequence analysis revealed the presence of micro satellite-containing genes that may be valuable for further gene mapping studies. This study contributes to the identification of numerous EST clones that can be applied to further clarifying the genetics and developmental biology of abalone.