• Title/Summary/Keyword: ESS scheduling

Search Result 21, Processing Time 0.03 seconds

Mixed Integer Programming (MIP)-based Energy Storage System Scheduling Method for Reducing the Electricity Purchasing Cost in an Urban Railroad System (도시철도 시스템 전기요금 절감을 위한 혼합정수계획법 기반 ESS(에너지저장장치) 스케줄링 기법)

  • Ko, Rakkyung;Kong, Seongbae;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1125-1129
    • /
    • 2015
  • Increasing peak load is one of the major concerns about operation of urban railroad systems. Since ESSs (Energy Storage Systems) have a great potential for shaving the peak load, there has been a growing interest in the use of ESS for peak load reduction. Also, ESS can be optimally scheduled to minimize the electricity purchasing cost under a given ToU (Time-of-Use) tariff by taking advantage of electricity price difference between peak and off-peak time. This paper presents a Mixed Integer Programming (MIP)-based ESS scheduling method to minimize the electricity purchasing cost under a ToU tariff for an urban railroad system.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.

Sizing and Economic Analysis of Battery Energy Storage System for Peak Shaving of High-Speed Railway Substations (고속철도 변전소 피크부하 저감용 ESS 용량 산정 및 경제성 분석)

  • Kim, Seul-Ki;Kim, Jong-Yul;Cho, Kyeong-Hee;Byun, Gil-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • The paper proposed a sizing method of an energy storage system(ESS) for peak shaving of high-speed railway substations based on load profile patterns of substations. A lithium based battery ESS was selected since it can produce high-power at high speed that peak shaving requires, and also takes up a relatively smaller space for installation. Adequate size of the ESS, minimum capacity which can technically meet a peak shaving target, was determined by collectively considering load patterns of a target substation, characteristics of the ESS to be installed, and optimal scheduling of the ESS. In case study, a local substation was considered to demonstrate the proposed sizing method. Also economic analysis with the determined size of ESS was performed to calculate electricity cost savings of the peak shaving ESS, and to offer pay-back period and return on investment.

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Development of Daily Operation Program of Battery Energy Storage System for Peak Shaving of High-Speed Railway Substations (고속철도 변전소 피크부하 저감용 ESS 일간 운전 프로그램 개발)

  • Byeon, Gilsung;Kim, Jong-Yul;Kim, Seul-Ki;Cho, Kyeong-Hee;Lee, Byung-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.404-410
    • /
    • 2016
  • This paper proposed a program of an energy storage system(ESS) for peak shaving of high-speed railway substations The peak shaving saves cost of equipment and demand cost of the substation. To reduce the peak load, it is very important to know when the peak load appears. The past data based load profile forecasting method is easy and applicable to customers which have relatively fixed load profiles. And an optimal scheduling method of the ESS is helpful in reducing the electricity tariff and shaving the peak load efficiently. Based on these techniques, MS. NET based peak shaving program is developed. In case study, a specific daily load profile of the local substation was applied and simulated to verify performance of the proposed program.

Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation (ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석)

  • Ji Hyun Lee;Seong Jegarl;Yong Chan Jung;Ah-Yun Yoon
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.

Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery (1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석)

  • Baek, Ja-Hyun;Ko, Eun-Young;Kang, Tae-Hyuk;Lee, Han-Sang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.