• Title/Summary/Keyword: ES(Evolution Strategy) algorithm

Search Result 51, Processing Time 0.022 seconds

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

Optimal Design of Fiber-optic Surface Plasmon Resonance Sensors

  • Jung, Jae-Hoon;Kim, Min-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.55-58
    • /
    • 2007
  • We propose a systematic method for design of fiber-optic surface plasmon resonance (SPR) sensors. We used rigorous coupled wave analysis (RCWA) for analysis of the transmission spectrum, and the (1+1) evolution strategy (ES) was employed as an optimization tool. The simulation results show that the optimization method presented here is very useful in designing fiber-optic SPR sensor for strain and temperature measurement. This algorithm can be extended to another objective function with other weighting factors and optical parameters.

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.

A Study on the Optimum Design of Cargo Tank for the LPG Carriers Considering Fabrication Cost (건조비를 고려한 LPG 운반선 화물창의 최적설계에 관한 연구)

  • Shin, Sang-Hoon;Hwang, Sun-Bok;Ko, Dae-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • Generally in order to reduce the steel weight of stiffened plate, stiffener spaces tend to be narrow and the plate gets thin. However, it will involve more fabrication cost because it can lead to the increase of welding length and the number of structural members. In the yard, the design which is able to reduce the total fabrication cost is needed, although it requires more steel weight. The purpose of this study is to find optimum stiffener spaces to minimize the fabrication cost for the cargo tank of LPG Carriers. Global optimization methods such as ES(Evolution Strategy) and GA(Genetic Algorithm) are introduced to find a global optimum solution and the sum of steel material cost and labor cost is selected as main objective function. Convergence degree of both methods in according to the size of searching population is examined and an efficient size is investigated. In order to verify the necessity of the optimum design based on the cost, minimum weight design and minimum cost design are carried out.

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

A Design of Artifical Neural Network Power System Stabilizer Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 신경망-전력계통안정화장치의 설계)

  • Park, Je-Young;Choi, Jae-Gon;Hwang, Gi-Hyun;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1177-1179
    • /
    • 1999
  • This paper presents a design of artificial neural network power system stabilizer(ANNPSS) using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses both a genetic algorithm(GA) and an evolution strategy(ES), useing the merits of two different evolutionary computations. ANNPSS shows better control performances than conventional power system stabilizer(CPSS) in three-phase fault with heavy load which is used when tuning ANNPSS. To show the robustness of the proposed ANNPSS, it is applied to damp the low frequency oscillation caused by disturbances such as three-phase fault with normal and light load. the proposed ANNPSS shows better robustness than CPSS.

  • PDF

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms (적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계)

  • Won, Taep-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

Game Theory Based Co-Evolutionary Algorithm (GCEA) (게임 이론에 기반한 공진화 알고리즘)

  • Sim, Kwee-Bo;Kim, Ji-Youn;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • Game theory is mathematical analysis developed to study involved in making decisions. In 1928, Von Neumann proved that every two-person, zero-sum game with finitely many pure strategies for each player is deterministic. As well, in the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Not the rationality but through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) introduced by Maynard Smith. Keeping pace with these game theoretical studies, the first computer simulation of co-evolution was tried out by Hillis in 1991. Moreover, Kauffman proposed NK model to analyze co-evolutionary dynamics between different species. He showed how co-evolutionary phenomenon reaches static states and that these states are Nash equilibrium or ESS introduced in game theory. Since the studies about co-evolutionary phenomenon were started, however many other researchers have developed co-evolutionary algorithms, in this paper we propose Game theory based Co-Evolutionary Algorithm (GCEA) and confirm that this algorithm can be a solution of evolutionary problems by searching the ESS.To evaluate newly designed GCEA approach, we solve several test Multi-objective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by co-evolutionary algorithm and analyze optimization performance of GCEA by comparing experimental results using GCEA with the results using other evolutionary optimization algorithms.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.