• Title/Summary/Keyword: ERM proteins (ezrin, radixin, moesin)

Search Result 4, Processing Time 0.022 seconds

Amphetamine-induced ERM Proteins Phosphorylation Is through $PKC{\beta}$ Activation in PC12 Cells

  • Jeong, Ha-Jin;Kim, Jeong-Hoon;Jeon, Song-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • Amphetamine, a synthetic psychostimulant, is transported by the dopamine transporter (DAT) to the cytosol and increases the exchange of extracellular amphetamine by intracellular dopamine. Recently, we reported that the phosphorylation levels of ezrin-radixin-moesin (ERM) proteins are regulated by psychostimulant drugs in the nucleus accumbens, a brain area important for drug addiction. However, the significance of ERM proteins phosphorylation in response to drugs of abuse has not been fully investigated. In this study, using PC12 cells as an in vitro cell model, we showed that amphetamine increases ERM proteins phosphorylation and protein kinase C (PKC) ${\beta}$ inhibitor, but not extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinases (PI3K) inhibitors, abolished this effect. Further, we observed that DAT inhibitor suppressed amphetamine-induced ERM proteins phosphorylation in PC12 cells. These results suggest that $PKC{\beta}$-induced DAT regulation may be involved in amphetmaine-induced ERM proteins phosphorylation.

Ezrin-radixin-moesin proteins are regulated by Akt-GSK3β signaling in the rat nucleus accumbens core

  • Kim, Wha Young;Cai, Wen Ting;Jang, Ju Kyong;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.121-126
    • /
    • 2020
  • The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins known to play roles in cell-shape determination as well as in signaling pathways. We have previously shown that amphetamine decreases phosphorylation levels of these proteins in the nucleus accumbens (NAcc), an important neuronal substrate mediating rewarding effects of drugs of abuse. In the present study, we further examined what molecular pathways may be involved in this process. By direct microinjection of LY294002, a PI3 kinase inhibitor, or of S9 peptide, a proposed GSK3β activator, into the NAcc core, we found that phosphorylation levels of ERM as well as of GSK3β in this site are simultaneously decreased. These results indicate that ERM proteins are under the regulation of Akt-GSK3β signaling pathway in the NAcc core. The present findings have a significant implication to a novel signal pathway possibly leading to structural plasticity in relation with drug addiction.

The Phosphorylation Status of Merlin Is Important for Regulating the Ras-ERK Pathway

  • Jung, Ju Ri;Kim, Hongtae;Jeun, Sin-Soo;Lee, Joo Yong;Koh, Eun-Jeoung;Ji, Cheol
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.196-200
    • /
    • 2005
  • The neurofibromatosis type2 (NF2) tumor suppressor gene product, merlin, is structurally related to the ezrin-radixin-moesin (ERM) family of proteins that anchor the actin cytoskeleton to specific membrane proteins and participate in cell signaling. However, the basis of the tumor suppressing activity of merlin is not well understood. Previously, we identified a role of merlin as an inhibitor of the Ras-ERK signaling pathway. Recent studies have suggested that phosphorylation of merlin, as of other ERM proteins, may regulate its function. To determine whether phosphorylation of merlin affects its suppression of Ras-ERK signaling, we generated plasmids expressing full-length merlin with substitutions of serine 518, a potential phosphorylation site. A substitution that mimics constitutive phosphorylation (S518D) abrogated the ability of merlin to suppress effects of the Ras-ERK signaling pathway such as Ras-induced SRE transactivation, Elk-mediated SRE transactivation, Ras-induced ERK phosphorylation and Ras-induced focus formation. On the other hand, an S518A mutant, which mimics nonphosphorylated merlin, acted like wild type merlin. These observations show that mimicking merlin phosphorylation impairs not only growth suppression by merlin but also its inhibitory action on the Ras-ERK signaling pathway.

Role of Rho A and F-actin for uropod formation in T lymphocytes (T 세포의 Uropod 형성에 있어 Rho A와 F-actin의 역할)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.192-197
    • /
    • 2007
  • Two distinct morphological features, leading edge and uropod, in mobile T lymphocyte are crucial for efficient directional movement. The uropod is a unique rear protrusion in migrating lymphocytes, in which several proteins, including CD44, ERM (ezrin/radixin/moesin), and F-actin cytoskeleton are concentrated and concerted. F-actin cytoskeleton is a basic mold for the shape maintenance. Rho A small GTPase acts as cytoskeleton organizer, So far, various pathways potentially can induce the Rho activation. PDZ domain is able to increase active Rho A form (Rho-GTP) level, reorganize F-actin cytoskeleton, disrupts the uropod structure and cell migration was diminished, suggesting that signaling pathways between Rho and F-artin cytoskeleton are related to uropod formation.