• 제목/요약/키워드: ERK1/2 protein

검색결과 596건 처리시간 0.029초

Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells

  • Bae, Eun Hui;Joo, Soo Yeon;Ma, Seong Kwon;Lee, JongUn;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Resveratrol (RSV) may provide numerous protective effects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the effects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuclear factor erythroid 2-related factor 2 (Nrf2), mouse cortical collecting duct cells (M1) cells treated with HHE exhibited increased activation of p38 MAPK, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and increased expression of NOX4, $p47^{phox}$, Kelch ECH associating protein 1 (Keap1) and COX2. HHE treatment also induced $NF-{\kappa}B$ activation by promoting $I{\kappa}B-{\alpha}$ degradation. Meanwhile, the observed increases in nuclear $NF-{\kappa}B$, NOX4, $p47^{phox}$, and COX2 expression were attenuated by treatment with Bay 117082, N-acetyl-l-cysteine (NAC), or RSV. Our findings indicate that RSV inhibits the expression of inflammatory proteins and the production of reactive oxygen species in M1 cells by inhibiting $NF-{\kappa}B$ activation.

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin;Li, Hua;Kim, Jae-Yeon;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2011
  • The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Phorbol 12-myristate 13-acetate (PMA) 처리로 유도되는 THP-1 세포의 초기 부착에 관한 다양한 인자의 효과 (Effect of Various Factors on Early THP-1 Cell Adhesion Induced Phorbol 12-Myristate 13-Acetate (PMA))

  • 조용삼;신지현;최태생
    • 생명과학회지
    • /
    • 제18권7호
    • /
    • pp.952-957
    • /
    • 2008
  • 본 실험에서는 THP-1 세포의 PMA에 의하여 유도되는 초기 세포부착에 관한 메카니즘을 이해하기 위하여 다양한 요인(혈청, 신규 단백질의 합성, 세포 골격 저해제, 단백질 인신화 저해제)들의 효과를 조사하였다. 또한 본 실험에서는 이들 세포부착의 정도를 일반적으로 세포증식 분석에 사용되고 있는 SRB염색법을 도입하여 세포부착 분석에 간편한 방법의 조건을 확립하였다. PMA에 의한 초기 세포부착에는 배양액중의 혈청의 유무는 영향이 없었으나, 신규 단백질의 합성이 요구되는 것을 확인하였다. 또한 이들 초기 세포부착에 PMA처리에 의한 PKC의 활성화는 필수적이나, 그 하류 활성화 인자로 잘 알려진 MAP-kinase (erk1/2)의 인산화는 필요치 않음을 알 수 있었다. 흥미롭게도 액틴 중합 저해제인 cytochalasin D의 PMA와 공 처리는 오히려 세포부착을 PMA 단독 처리시 보다 증가시켰다. 또한 본 실험에서 사용된 SRB 염색법을 통한 세포부착 분석법은 최근 암 등 다양한 질환의 신약 표적 분자로 주목을 받고 있는 PKC 저해제의 초기 세포 기반 분석에 매우 유용하리라고 생각된다.

Targeting SHCBP1 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Cells

  • Tao, Han-Chuan;Wang, Hai-Xiao;Dai, Min;Gu, Cheng-Yu;Wang, Qun;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5645-5650
    • /
    • 2013
  • Src homology 2 domain containing (SHC) is a proto-oncogene which mediates cell proliferation and carcinogenesis in human carcinomas. Here, the SHC SH2-domain binding protein 1 (SHCBP1) was first established to be up-regulated in human hepatocellular carcinoma (HCC) tissues by array-base comparative genome hybridization (aCGH). Meanwhile, we examine and verify it by quantitative real-time PCR and western blot. Our current data show that SHCBP1 was up-regulated in HCC tissues. Overexpression of SHCBP1 could significantly promote HCC cell proliferation, survival and colony formation in HCC cell lines. Furthermore, knockdown of SHCBP1 induced cell cycle delay and suppressed cell proliferation. Furthermore, SHCBP1 could regulate the expression of activate extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclin D1. Together, our findings indicate that SHCBP1 may contribute to human hepatocellular carcinoma by promoting cell proliferation and may serve as a molecular target of cancer therapy.

The Potential Neuroprotective Effects of Extracts from Oat Seedlings against Alzheimer's Disease

  • Won Seok Lee;Hae-June Lee;Ji Yeong Yang;Hye-Lim Shin;Sik-Won Choi;Jong-Ki Kim;Woo Duck Seo;Eun Ho Kim
    • Journal of Web Engineering
    • /
    • 제14권19호
    • /
    • pp.4103-4118
    • /
    • 2022
  • The physiological or dietary advantages of germinated grains have been the subject of numerous discussions over the past decade. Around 23 million tons of oats are consumed globally, making up a sizeable portion of the global grain market. Oat seedlings contain more protein, beta-glucan, free amino acids, and phenolic compounds than seeds. The progressive neurodegenerative disorder of Alzheimer's is accompanied by worsening memory and cognitive function. A key indicator of this disorder is the unusual buildup of amyloid-beta protein (or Aβ) in human brains. In this context, oat seedling extract (OSE) has been identified as a new therapeutic candidate for AD, due to its antioxidant activity and AD-specific mechanism of action. This study directly investigated how OSE affected AD and its impacts by examining the cognitive function and exploring the inflammatory response mechanism. The dried oat seedlings were grounded finely with a grinder, inserted with 50% fermented ethanol 10 times (w/v), and extracted by stirring for 10 h at 45 ℃. After filtering the extract by 0.22 um filter, some of it was used for UHPLC analysis. The results indicated that the treatment with OSE protects against Aβ25-35-induced cytotoxicity in BV2 cells. Tg-5Xfad AD mice had strong deposition of Aβ throughout their brains, while WT mice did not exhibit any such deposition within their brains. A drastic reduction was observed in terms of numbers, as well as the size, of Aβ plaques within Tg-5Xfad AD mice exposed to OSE. This study indicated OSE's neuroprotective impacts against neurodegeneration, synaptic dysfunction, and neuroinflammation induced by amyloid-beta. Our results suggest that OSE acts as a neuroprotective agent to combat AD-specific apoptotic cell death, neuroinflammation, amyloid-beta accumulation, as well as synaptic dysfunction in AD mice's brains. Furthermore, the study indicated that OSE treatment affects JNK/ERK/p38 MAPK signaling, with considerable inhibition in p-JNK, p-p38, and p-ERK levels seen in the brain of OSE-treated Tg-5Xfad AD mice.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Ulmus Macrocarpa 열수 추출물에 의한 비장세포 수명 연장 (Ulmus Macrocarpa Water Extract Prolongs Splenocyte Life Span)

  • 강경화;현숙경;황혜진;김병우;김철민;정경태;이종환
    • 생명과학회지
    • /
    • 제25권10호
    • /
    • pp.1176-1183
    • /
    • 2015
  • Ulmus macrocarpa 자양강장 및 생리활성 물질로 이용되어 왔다. U, macrocarpa 열수 추출물(UMWE)이 일반적인 세포배양 조건에서 비장세포 수명연장에 미치는 효과에 대한 연구를 진행하였다. 100 μg/ml UMWE를 비장세포에 처리하여 실험을 진행하였다. 살아있는 세포확인은 Hoechst 33342 염색법과 세포생존관련 인자의 변화는 Western blot으로 확인하였다. 사이토카인 변화는 ELISA로 검증하였다. UMWE는 비장세포에 대하여 향상된 세포 생존력을 보였다. UMWE를 48시간과 96시간째 처리된 비장세포의 PI3K 및 ERK1/2의 인산화를 증가시켰다. 더욱이, 48시간과 96시간때에 Bcl-2의 발현량도 증가하였다. 반면, UMWE는 48시간과 96시간에 caspase-3의 활성이 줄어들었다. ICAD 단백질은 48시간에 증가하였다. UMWE는 조혈 및 세포생존력에 영향을 미치는 IL-2 cytokine량은 줄었지만 반면, IL-4 hematopoietin cytokine의 양은 증가하였다. UMWE는 48시간과 96시간에 증가된 IFN-γ level을 나타내었고 IL-12의 경우는 증가패턴을 보이는 효과를 발휘하였다. 이러한 결과는 UMWE가 다양한 신호전달 및 사이토카인 조절을 통해 비장세포 수명연장을 할 수 있다는 것으로 사료된다.

산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과 (Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes)

  • 한의정;신은지;김기웅;안긴내;배태진
    • 한국수산과학회지
    • /
    • 제53권1호
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.