• Title/Summary/Keyword: ERK1/2 protein

Search Result 588, Processing Time 0.022 seconds

Effects of Electroacupucture on NMDA Receptor-dependent Spinal ERK MAPK Expression in CFA-induced Pain Model (전침에 의한 CFA유발 통증모델의 NMDA 수용체 의존적 ERK MAPK 발현 변화)

  • Kim, Ha-Neui;Kim, Yu-Ri;Jang, Ji-Yeon;Choi, Yung-Hyun;Lee, Yong-Tae;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.983-988
    • /
    • 2010
  • The present study aims to investigate a possible mechanism of electroacupuncture (EA) in the spinal dorsal horn that may underlie N-methyl-D-aspartate (NMDA) receptor-associated extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways. The hot plate latency of the ipsilateral hindpaw of EA-treated rats was significantly decreased compared with complete Freund's adjuvant (CFA)-injected ones. The expressions of NR1 and NR2B subuint mRNA of NMDA receptor in the whole L4-5 segments are decreased by CFA treatment, but NR2B subunit was significantly recovered by EA treatment. When we detected the expression of ERK, there were no significant difference between normal and CFA-treated rats with EA or NMDA receptor antagonist MK801. But phosphorylated ERK expressions were markedly induced by CFA, but these inductions were significantly modulated by EA treatment. Although hosphorylation of ERK was also arrested by MK801, these inductions of CFA-injected rats was markedly inhibited only by co-treatment with EA and MK801. Phosphorylated cAMP response element-binding protein (CREB), ERK-related transcriptional factor, showed a significant increase in CFA-treated rats and this increase was slightly inhibited by EA and MK801 treatments. But immunoreaction for phosphorylated CREB were significantly increased by CFA treatment in the superficial laminae of the dorsal horn and these inductions were significantly arrested by co-treatment of EA and MK801. Consequently, the hyperalgesia induced by CFA are associated NMDA receptor and EA and MK801 may showed anti-hyperalgesia via same mechanism for inhibition of ERK and CREB phosphorylation in the dorsal horn.

Silymarin Inhibits Cytokine-Stimulated Pancreatic Beta Cells by Blocking the ERK1/2 Pathway

  • Kim, Eun Jeong;Kim, Jeeho;Lee, Min Young;Sudhanva, Muddenahalli Srinivasa;Devakumar, Sundaravinayagam;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • We show that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibits cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$)-induced production of nitric oxide (NO) in the pancreatic beta cell line MIN6N8a. Immunostaining and Western blot analysis showed that silymarin inhibits iNOS gene expression. RT-PCR showed that silymarin inhibits iNOS gene expression in a dose-dependent manner. We also showed that silymarin inhibits extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) phosphorylation. A MEK1 inhibitor abrogated CM-induced nitrite production, similar to silymarin. Treatment of MIN6N8a cells with silymarin also inhibited CM-stimulated activation of NF-${\kappa}B$, which is important for iNOS transcription. Collectively, we demonstrate that silymarin inhibits NO production in pancreatic beta cells, and silymarin may represent a useful anti-diabetic agent.

Effects of 4 Weeks Endurance Exercise on Expression of Extracellular Signal-Regulated Kinases and c-Jun N-terminal Kinase in Rat Back Skin Hair Follicle (4주간 지구성 운동이 흰쥐의 Back Skin Hair Follicle에서 ERK 및 JNK의 활성화에 미치는 영향)

  • Kim, Mo-Kyung;Park, Han-Su;Jo, Sung-Cho;Chae, Jeong-Ryong;Kim, Mo-Young;Shin, Byung-Cheul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1211-1216
    • /
    • 2006
  • The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the Extracellular-signal regulated protein kinase (ERK1/2), Phosphorylated ERK 1/2(pERK1/2) and the Phosphorylated c-Jun N-terminal kinase(pJNK) pathways was determined in rat Back skin Hair follicle. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary group(NE; n=10); (ii) low-intensity exercise group (Bm/min; LIE; n=10); and (iii) moderate-high-intensity exercise group(28m1min; HIE; n=10). The training regimens were planned so that animals covered the same distance and had similar utilization for both LIE and HIE exercise sessions. The report runs as follows; A single bout of LIE or HIE following 4 weeks of exercise led to a twofold increase in the phosphorylation of ERK2, pERK2 and a threefold increase in pJNKl, pERKl. ERKI phosphorylation in LIE Back skin sampled and pJNK2 in HIE Back skin sampled 48h after the last exercise bout was similar to sedentary values, while pJNK2 phosphorylation in LIE Back skin sampled was 70-80% lower than sedentary. 48h after the last exercise bout of LIE or HIE increased ERK2, pERKl and pJNKl expression, with the magnitude of this increase being independent of prior exercise intensity or duration. PERK1/2, pJNKl expression was increased Three- to fourfold in Back skin Hair follicle sampled 48h after the last exercise bout irrespective of the prior exercise programme, but ERKI expression in HIE Back skin sampled was approximately 90% lower than sedentary values. In conclusion, exercise-training of different jntensities/durations results in selective postexercise activation of intracellular signal pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Hydrogen sulfide, a gaseous signaling molecule, elongates primary cilia on kidney tubular epithelial cells by activating extracellular signal-regulated kinase

  • Han, Sang Jun;Kim, Jee In;Lipschutz, Joshua H.;Park, Kwon Moo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.593-601
    • /
    • 2021
  • Primary cilia on kidney tubular cells play crucial roles in maintaining structure and physiological function. Emerging evidence indicates that the absence of primary cilia, and their length, are associated with kidney diseases. The length of primary cilia in kidney tubular epithelial cells depends, at least in part, on oxidative stress and extracellular signal-regulated kinase 1/2 (ERK) activation. Hydrogen sulfide (H2S) is involved in antioxidant systems and the ERK signaling pathway. Therefore, in this study, we investigated the role of H2S in primary cilia elongation and the downstream pathway. In cultured Madin-Darby Canine Kidney cells, the length of primary cilia gradually increased up to 4 days after the cells were grown to confluent monolayers. In addition, the expression of H2S-producing enzyme increased concomitantly with primary cilia length. Treatment with NaHS, an exogenous H2S donor, accelerated the elongation of primary cilia whereas DL-propargylglycine (a cystathionine γ-lyase inhibitor) and hydroxylamine (a cystathionine-β-synthase inhibitor) delayed their elongation. NaHS treatment increased ERK activation and Sec10 and Arl13b protein expression, both of which are involved in cilia formation and elongation. Treatment with U0126, an ERK inhibitor, delayed elongation of primary cilia and blocked the effect of NaHS-mediated primary cilia elongation and Sec10 and Arl13b upregulation. Finally, we also found that H2S accelerated primary cilia elongation after ischemic kidney injury. These results indicate that H2S lengthens primary cilia through ERK activation and a consequent increase in Sec10 and Arl13b expression, suggesting that H2S and its downstream targets could be novel molecular targets for regulating primary cilia.

Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Production of TNF-${\alpha}$ and IL-6 in Macrophages by Mycobacterial Protein Antigens (결핵균 단백항원 자극에 의한 대식세포의 TNF-${\alpha}$ 및 IL-6 생성과 ERK 활성화)

  • Ahn, Hae-Jeong;Cho, Sang-Nae;Paik, Tae-Hyun;Lee, Jung-Lim;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.26-30
    • /
    • 2007
  • Background: Mycobacterial antigens released as PIM, LM, LAM, lipoproteins and other cellular factors may contribute to macrophage and dendritic cell activation through pattern recognition receptors such as TLRs. In this study, we assessed cytokine production and ERK activation with stimulation of several major mycobacterial antigens. Methods: Purified mycobacterial antigens (10, 22, 30, 38kDa) and recombinant antigens (6, 16, 19, 38kDa, Ag85A antigen) were studied. The production of cytokines (TNF-${\alpha}$, IL-12, IL-6) was measured by ELISA. The ERK activation was detected by western blotting. The expression of TLR2 or TLR4 was measured by flow cytometry. Results: Among purified antigens only 30kDa antigen induced production of IL-6 or TNF-${\alpha}$ in THP-1 macrophage cells. When THP-1 macrophage cells were treated with 30kDa antigen, phosphorylation of ERK was detected. ERK activation also occurred in TLR2 transfectant HEK293 cells with 30kDa antigen stimulation. Conclusion: 30kDa antigen is one of the major mycobacterial antigens inducing cytokine production and MAP kinases phosphorylation in macrophages.

Protective Effects of Seonpyejeongcheon-tang on Elastase-Induced Lung Injury in Mice (Elastase 매개성 폐조직 손상에 대한 선폐정천탕(宣肺定喘湯)의 보호효과)

  • Yoon, Jong-Man;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.84-101
    • /
    • 2010
  • Objectives : This study aimed to evaluate the protective effects of Seonpyejeongcheon-tang (SJT) on elastase-induced lung injury. Materials and Methods : The extract of SJT was treated to A549 cells and an elastase-induced lung injury mouse model. Then, various parameters such as cell-based cytoprotective activity and histopathological findings were analyzed. Results : SJT showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B 1, Cdk1, and Erk1/2, and gene expression of TNF-$\alpha$ and IL-$1{\beta}$ in A549 cells. SJT treatment also revealed a protective effect on elastase-induced lung injury in mouse model. This effect was evidenced via histopathological findings, including immunofluoresence stains against elastin, collagen, and caspase 3, and protein levels of cyclin B1, Cdc2, and Erk1/2 in lung tissue. Conclusion : These data suggest that SJT has pharmaceutical properties on lung injury. This study thus provides scientific evidence for the efficacy of SJT for clinical application to patients with chronic obstructive pulmonary disease.

Epidermal Growth Factor Induces Vasoconstriction Through the Phosphatidylinositol 3-Kinase-Mediated Mitogen-Activated Protein Kinase Pathway in Hypertensive Rats

  • Kim, Jung-Hwan;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;So, Hyun-Ha;Lee, Keun-Sang;Lee, Hwan-Myung;Roh, Hui-Yul;Choi, Wahn-Soo;Park, Tae-Kyu;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2006
  • We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.

  • PDF

Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

  • Son, Sihoon;Kim, Kyoung-Tae;Cho, Dae-Chul;Kim, Hye-Jeong;Sung, Joo-Kyung;Bae, Jae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Objective : The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods : We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun $NH_2$-terminal kinases (JNKs) and ${\beta}$-actin as the control group. Results : Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, $1{\mu}M$) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and $1{\mu}M$, p<0.05). Conclusion : Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations.

Tannic acid-induced apoptosis in FaDu hypopharyngeal squamous cell carcinoma

  • Ta, Loan Thi;Nguyen, Trang Thi Kieu;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.43-49
    • /
    • 2019
  • Tannic acid (TA) is a water-soluble polyphenol compound found in various herbal plants. We investigated the chemopreventive effects of TA on FaDu hypopharyngeal squamous carcinoma cells. In an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, TA showed dose-dependent cytotoxicity with a half maximal inhibitory concentration (IC50) of 50 ?M. Cell cycle analysis and immunofluorescence imaging demonstrated that under low-dose ($25{\mu}M$) treatment, FaDu cells were arrested in G2/M phase, and as the dose of TA was increased, apoptosis was induced with the increase of cell population at sub-G1 phase. The expressions of various cyclins, including cyclin D1 and cyclin-dependent kinases (CDK-1 and CDK-2), were down-regulated at low doses of TA, whereas apoptotic effectors such as cleaved caspase 3, cleaved caspase 7, and poly (ADP-ribose) polymerase (PARP) were expressed in a dose-dependent manner in Western blotting. In addition, TA-induced apoptosis of FaDu cells might be mediated by the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway, with the upregulation of p-AKT/p-PKB (phosphorylated protein kinase B) and p-ERK. Overall, our data support the hypothesis that TA is a potential candidate agent for the treatment of hypopharyngeal cancer.