• Title/Summary/Keyword: ERK signaling pathway

Search Result 317, Processing Time 0.029 seconds

The Phospholipase-Protein Kinase C-MEK-ERK Pathway is Essential in Mycobacteria-induced CCL3 and CCL4 Expression in Human Monocytes (사람 단핵구에서 결핵균에 의해 유도되는 CCL3 및 CCL4 발현에 대한 Phospholipase-Protein Kinase C-MEK-ERK 경로의 역할 분석)

  • Yang, Chul-Su;Song, Chang-Hwa;Jung, Saet-Byel;Lee, Kil-Soo;Kim, Su-Young;Lee, Ji-Sook;Shin, A-Rum;Oh, Jae-Hee;Kwon, Yu-Mi;Kim, Hwa-Jung;Park, Jeong-Kyu;Paik, Tae-Hyun;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.237-246
    • /
    • 2005
  • Background: Little information is available on the identification and characterization of the upstream regulators of the signal transduction cascades for Mycobacterium tuberculosis (M. tbc)-induced ERK 1/2 activation and chemokine expression. We investigated the signaling mechanisms involved in expression of CCL3 /MIP-1 and CCL4/MIP-1 in human primary monocytes infected with M. tbc. Methods: MAP kinase phosphorylation was determined using western blot analysis with specific primary antibodies (ERK 1/2, and phospho-ERK1/2), and the upstream signaling pathways were further investigated using specific inhibitors. Results: An avirulent strain, M. tbc H37Ra, induced greater and more sustained ERK 1/2 phosphorylation, and higher CCL3 and CCL4 production, than did M. tbc H37Rv. Specific inhibitors for mitogen-activated protein kinase (MAPK) kinase (MEK; U0126 and PD98059) significantly inhibited the expression of CCL3 and CCL4 in human monocytes. Mycobactetia-mediated expression of CCL3 and CCL4 was not inhibited by the Ras inhibitor manumycin A or the Raf-1 inhibitor GW 5074. On the other hand, phospholipase C (PLC) inhibitor (U73122) and protein kinase C (PKC)specific inhibitors ($G\ddot{o}6976$ and Ro31-8220) significantly reduced M. tbc-induced activation of ERK 1/2 and chemokine synthesis. Conclusion: These results are the first to demonstrate that the PLC-PKC-MEK-ERK, not the Ras-Raf-MEK-ERK, pathway is the major signaling pathway inducing M. tbc-mediated CCL3 and CCL4 expression in human primary monocytes.

TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition

  • Wang, Yi-Dong;Bian, Guo-Hui;Lv, Xiao-Yan;Zheng, Rong;Sun, Huan;Zhang, Zheng;Chen, Ye;Li, Qin-Wei;Xiao, Yan;Yang, Qiu-Tan;Ai, Jian-Zhong;Wei, Yu-Quan;Zhou, Qin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.733-738
    • /
    • 2008
  • Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the $G_1$- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated $G_1$- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors

  • Lei, Yuan-Yuan;Wang, Wei-Jia;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8539-8548
    • /
    • 2014
  • Mitogen-activated protein kinase (MAPK) is an important signaling pathway in living beings in response to extracellular stimuli. There are 5 main subgroups manipulating by a set of sequential actions: ERK(ERK1/ERK2), c-Jun N(JNK/SAPK), p38 MAPK($p38{\alpha}$, $p38{\beta}$, $p38{\gamma}$ and $p38{\delta}$), and ERK3/ERK4/ERK5. When stimulated, factors of upstream or downstream change, and by interacting with each other, these groups have long been recognized to be related to multiple biologic processes such as cell proliferation, differentiation, death, migration, invasion and inflammation. However, once abnormally activated, cancer may occur. Several components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, JNK, ERK, MEK, RAF, RAS, and DUSP1. Among them, alteration of the RAS-RAF-MEK-ERK-MAPK(RAS-MAPK) pathway has frequently been reported in human cancer as a result of abnormal activation of receptor tyrosine kinases or gain-of-function mutations in genes. The reported roles of MAPK signaling in apoptotic cell death are controversial, so that further in-depth investigations are needed to address these controversies. Based on an extensive analysis of published data, the goal of this review is to provide an overview on recent studies about the mechanism of MAP kinases, and how it generates certain tumors, as well as related treatments.

Antidepressant effect of water extract of Taraxacum platycarpum through BDNF, ERK and CREB pathway (BDNF, ERK 및 CREB 경로를 통한 포공영 추출물의 항우울 효과)

  • Gu, Pil Sung;Lee, Jihye;Choi, Yun Hee;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • Objectives : Taraxacum platycarpum H. Dahlstedt has been reported to have several biological properties such as skin hydration and antiinflammation. The purpose of this study was to examine the antidepressive effects of water extract of T. platycarpum (WTP) on an animal model of depression. Methods : In the present study, normal ICR mice (4 weeks) were used, and orally administered with WTP (25, 50 and 100 mg/kg). Depression-like behavior was monitored the forced swimming test (FST) and tail suspension test (TST) in mice. The locomotor activity was evaluated to eliminate the false-positive activity in the open field test (OFT). Fluoxetine, the selective serotonin reuptake inhibitor, as a positive control was intraperitoneally administered at a dose of 15 mg/kg at 30 min before starting the behavioral test. Moreover, we evaluated the effects of WTP on the expression of brain-derived neurotrophic factor (BDNF) and the extracellular signal-regulated kinase (ERK)/ cyclic AMP response-element binding protein (CREB) signaling pathway in the hippocampus using Western blot. Results : The administration of WTP (50 and 100 mg/kg) significantly (P < 0.05, respectively) reduced the immobility time during FST and TST without accompanying changes in locomotor activity by OFT. Furthermore, WTP at dose of 100 mg/kg increased the BDNF expression and the phosphorylation of ERK and CREB in the hippocampus region. Conclusions : These results suggest that WTP has a useful anti-depressant effect through the regulation of BDNF/ERK/CREB signaling pathway.

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.