• Title/Summary/Keyword: ERK activation

Search Result 690, Processing Time 0.031 seconds

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Taurine Activates ERK2 and Induces the Production of Nitric Oxide in Osteoblast-like UMR-106 Cells

  • Park, Sung-Youn;Kim, Harriet;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.145-145
    • /
    • 1998
  • In the present study, we have demonstrated that taurine could stimulate the production of nitric oxide and the activity of ERK2 (extracellular signal regulated protein kinase or pp42 MAP kinase). Nitric oxide(NO), the product of inducible nitric oxide synthase(iNOS), is known to be implicated in the metabolism of bone. ERK cascade plays a key role in the gene expression of iNOS in osteoblastic cell. We investigated whether taurine (l-20mM) could stimulate ERK2 activity, nitric oxide production, and inducible nitric oxide synthase in osteoblast-like UMR-106 cells. Nitric oxide was measured spectophotometrically as nitrite and the activation of ERK2 and iNOS was studied using Western 145 blot analysis. Taurine increased the production of nitric oxide in a dose-dependent manner and the effect was reached to a maximum at 10 mM. The activation of iNOS were consistent with NO levels. The tyrosine phosphorylation of ERK2 was increased by taurine in a time-dependent manner. The these result suggest that taurine might stimulate the production of nitric oxide in osteoblast-like cells by the activation of ERK2 and could regulate the metabolism of bone via nitric oxide.

  • PDF

ERK1/2 activation by the C. elegans muscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

  • Shin, Young-Mi;Shin, Young-Ju;Kim, Seung-Woo;Park, Yang-Seo;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.155-160
    • /
    • 2010
  • Extracellular signal-regulated kinases 1/2 (ERK1/2) play important roles in a variety of biological processes including cell growth and differentiation. We have previously reported that GAR-3 activates ERK1/2 via phospholipase C and protein kinase C, presumably through pertussis toxin (PTX)-insensitive Gq proteins, in Chinese hamster ovary (CHO) cells. Here we provide evidence that GAR-3 also activates ERK1/2 through PTX-sensitive G proteins, phosphatidylinositol 3-kinase (PI 3-kinase), and Src family kinases in CHO cells. We further show that in human embryonic kidney (HEK293) cells, epidermal growth factor receptor and Ras are required for efficient ERK1/2 activation by GAR-3. Taken together, our data indicate that GAR-3 evokes ERK1/2 activation through multiple signaling pathways in cultured mammalian cells.

EFFECTS OF MANDIBULAR NERVE TRANSECTION ON TRIGEMINAL GANGLION NEURONS AND THE ACTIVATION OF MICROGLIAL CELLS IN THE MEDULLARY DORSAL HORN (하악신경 절삭이 삼차신경절 신경세포와 연수후각 소교세포 활성화에 미치는 영향)

  • Lim, Yo-Han;Choie, Mok-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.227-237
    • /
    • 2007
  • Microglial cell activation is known to contribute to neuropathic pain following spinal sensory nerve injuries. In this study, I investigated its mechanisms in the case of trigeminal sensory nerve injuries by which microglial cell and p38 mitogen-activated protein kinase (p38 MAPK) activation in the medullary dorsal horn (MDH) would contribute to the facial pain hypersensitivity following mandibular nerve transection (MNT). And also investigated the changes of trigeminal ganglion neurons and ERK, p38 MAPK manifestations. Activation of microglial cells was monitored at 1, 3, 7, 14, 28 and 60 day using immunohistochemical analyses. Microglial cell activation was primarily observed in the superficial laminae of the MDH. Microglial cell activation was initiated at postoperative 1 day, maximal at 3 day, maintained until 14 day and gradually reduced and returned to the basal level by 60 days after MNT. Pain hypersensitivity was also initiated and attenuated almost in parallel with microglial cell activation pattern. To investigate the contribution of the microglial cell activation to the pain hypersensitivity, minocycline, an inhibitor of microglial cell activation by means of p38 MAPK inhibition, was administered. Minocycline dose-dependently attenuated the development of the pain hypersensitivity in parallel with inhibition of microglial cell and p38 MAPK activation following MNT. Mandibular nerve transection induced the activation of ERK, but did not p38 MAPK in the trigeminal ganglion. These results suggest that microglial cell activation in the MDH and p38 MAPK activation in the hyperactive microglial cells play an important role in the development of facial neuropathic pain following MNT. The results also suggest that ERK activation in the trigeminal ganglion contributes microglial cell activation and facial neuropathic pain.

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway

  • Sun, Xin;Zhang, Tao;Deng, Qifei;Zhou, Qirui;Sun, Xianchao;Li, Enlai;Yu, Dexin;Zhong, Caiyun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.188-197
    • /
    • 2018
  • Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.

Effect of Lycii cortex radicis Extraction on Glioma Cell Viability

  • Kim, Seang-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.17-26
    • /
    • 2009
  • Objectives: Little information is available regarding the effect of Lycii cortex radicis (LCR) on cell viability in glioma cells. This study was therefore undertaken to examine the effect of LCR on cell survival in U87MG human glioma cells. Methods: Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. Activation of Akt and extracellular signal-regulated kinase (ERK) and activation of caspase-3 were estimated by Western blot analysis. Results: LCR resulted in apoptotic cell death in a dose- and time-dependent manner. LCR increased reactive oxygen species (ROS) generation and LCR-induced cell death was also prevented by antioxidants, suggesting that ROS generation played a critical role in LCR-induced cell death. Western blot analysis showed that LCR treatment caused down-regulation of Akt and ERK. The LCR-induced cell death was increased by the inhibitors of Akt and ERK. Activation of caspase-3 was stimulated by LCR and caspase inhibitors prevented the LCR-induced cell death. Conclusion: These findings suggest that LCR results in human glioma cell death through a mechanism involving ROS generation, down-regulation of Akt and ERK, and caspase activation.

  • PDF