• Title/Summary/Keyword: ER fluid

Search Result 228, Processing Time 0.022 seconds

Position Control of an ER Valve-Cylinder System (ER 밸브-실린더 시스템의 위치 제어)

  • 이효정;정재민;박재석;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.402-405
    • /
    • 1993
  • This paper presents design.dynamic modeling and control issues of a novel type of an ER valve-cylinder system incorporating with an electro-rheological(ER) fluid. The yield stress of the ER fluid to be employed to the proposed system is evaluated as a function of applied electric fields. The design and manufacturing process of the ER valve which features fast system response and simple mechanism are undertaken on the basis of model parameters. The governing equation for the hydraulic and pneumatic model is constructed by incorporation with the field-dependent Bingham behavior of the ER fluid. An effective neuro controller is proposed to realize an accurate position control.

  • PDF

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid (ER유체를 이용한 이방성 스퀴즈필름 댐퍼의 응답특성에 관한 연구)

  • Ahn, Young-Kong;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • Electro-Rheological(ER) fluid is applied to a controllable squeeze film damper(SFD) for stabilizing a flexible rotor system. ER fluid is a class of functional fluid whose yield stress varies according to the applied electric field strength, which is observed as viscosity variation of the fluid. In applying ER fluid to a SFD, a pair of rings of the damper can be used as electrodes. When the electrodes are divided into a horizontal pair and a vertical one, the SFD can produce damping force in each direction independently. A prototype of the directionally controllable SFD was constructed and its performance was experimentally and numerically investigated in the present work.

  • PDF

Position Control of a Moving Table Using ER Brake and ER Clutch (ER 브레이크와 클러치를 이용한 이송 테이블의 위치 제어)

  • 김승래;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.225-229
    • /
    • 1996
  • This paper presents an active position control of a moving table utilizing ER(electro-rheological) brake and ER clutch. A transformer oil-based ER fluid is composed and its Bingham properties are evaluated with respect to electric fields. The dynamics of the actuators : ER brake and ER clutch, are identified through experiments, and subsequently the governing equation of motion of the moving table system is formulated from the governing equation, a sliding mode controller is designed to achieve an accurate position control. Both simulation and experimental results and presented in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Mechanical Durability of ER Fluids and Performance Investigation of ER Dampers (ER유체의 기계적 내구성 및 ER댐퍼의 성능고찰)

  • 박우철;최승복;정재천;서문석;강윤수;여문수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1044-1047
    • /
    • 1996
  • This paper presents durability characteristics of electrorheological(ER) fluids which undergo a reversible phase change depending upon the imposition of electric fields. The field-dependent Bingham properties are subjected to be altered from long time use of the ER fluid. The level of the changed properties depends upon employed device and test conditions. A piston-rod system which has same mechanism as ER dampers is adopted in this study and tested by increasing operation cycle up to 1 million. Bingham properties of initial and us ER fluids are tested and compared. In addition, these ER fluids are applied to ER damper in order to evaluate damping force performance.

  • PDF

Bingham Charateristics of Electrorheological Fluid and Its Application to ER valve and ER Damper (전기유변유체의 빙햄특성과 밸브 및 댐퍼에의 응용)

  • 배종인
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 1998
  • 전기장이 인가되고 있는 유로를 유동하는 전기유변유체의 기본성질을 파악하기 위 한 실험 및 해석적 연구를 수행하여 빙햄유체로서의 유효성에 대해 알아보고 전기장과 유로 면 형상 및 진동유동으로 인한 영향에 대해 조사함으로써 ER밸브 및 ER대퍼로의 응용과 관련한 감쇄력 제어에 대해 검토하였다. 첫 번째 실험은 ER밸브의 높이가 2mm인 적극면이 평탄한것과 요철로 된 것을 사용하여 압력손실을 압력변환기로 측정함으로써 전기장 및 유 로형상에 대한 영향을 알아보았다. 압력손실 및 전단응력이 전기자세기와 함수관계를 가짐 을 알수 있었고 전기장세기와 유속의 변화시 손실계수에 의한 ER효과의 상이함이 확인되었 으며 레이놀즈수가 커지면 항복전단응력의 영향은 나타나지 않았다. 두 번째 실험은 실린더 를 정현파로 진동시켜 ER밸브에서 감쇠력제어가 가능한가를 알아보고 빙햄유체모델로 설계 된 ER댐퍼의 모델과 비교하였다. ER배르와 ER댐퍼의 수학적 모델을 시뮬레이션한 결과는 약간 벗어남이 보이기는 하나 실험결과와 일치하요 있다. 이것은 ER유체를 단순히 빙행유 체로 취급할수없으나 거시적으로는 빙햄유체로 취급할수 있음을 시사한다.

  • PDF

Electrorhelological Properties of Monodispersed Submicron-sized Hollow Polyaniline Adipate Suspension

  • Sung, Bo-Hyun;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The electrorheoloRical (ER) fluids are composed of a colloidal dispersion of polarizable particles in insulating oil, and it's the rheological property changes by the applied electric field. These changed are reversible and occur fast within a fewmilliseconds. The ER properties of the ER fluid such as increment of viscosity and yield stress come from the particle chain structure induced by electric fleld. When formulating the ER fluid for a speciflc application, some requirement must besatisfled, which are high yield stress under electric field, rapid response, and dispersion stability. While this characteristic makes valuable ER fluids in valious industrial applications, their lung term and quiescent application has been limited because ofproblems with particle sedimentation. In an effort to overcome sedimentation problem of ER fluids, the anhydrous ER materials of monodispersed hollow polyaniline (PANI) and adipate derivative respectively with submicron-sized suspension providing wide operating temperature range and other advantage were synthesized in a four-step procedure. The ER fluidswere characterized by FT-lR, TGA, DLS, SEM, and TEM. Stability of the suspensions was examined by an UV spectroscopy.The rheological and electrical properties of the suspension were investigated Couette-type rheometer with a high voltagegenerator, current density, and conductivity. And the behavior of ER suspensions was observed by a video camera attached toan optical microscope under 3kV/mm. The suspensions showed good ER properties, durability, and particle dispersion.

Temperature-Dependent Hysteresis Investigation of Electro - Rheological Fluid Using Preisach Model (Preisach 모델을 이용한 ER 유체의 온도별 히스테리시스 특성 고찰)

  • 한영민;이호근;최승복;최형진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.316-322
    • /
    • 2002
  • This paper presents the temperature-dependent hysteresis identification of an electro-rheological (ER) fluid under various operating temperatures using the Preisach model. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. A couette type electroviscometer is then employed to obtain the field-dependent shear stress. In order to show the suitability of the Preisach model to predict a physical hysteresis phenomenon of the ER fluid, two significant properties; the minor loop property and the wiping-out property are experimentally examined under three dominant temperature conditions. Subsequently, the Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one under the both specified and unspecified temperatures. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Investigation on Temperature-dependent Hysteresis of Electro-rheological Fluid Using Preisach Model (Preisach 모델을 이용한 ER유체의 온도별 히스테리시스 특성 고찰)

  • 한영민;이호근;최승복;최형진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.648-656
    • /
    • 2002
  • This paper presents the identification of temperature-dependent hysteresis of an electro-rheological (ER) fluid under various operating temperatures using the Preisach model. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. A couette type electroviscometer is then employed to obtain the field-dependent shear stress. In order to show the suitability of the Preisach model to predict a physical hysteresis phenomenon of the ER fluid, two significant properties; the minor loop property and the wiping-out property are experimentally examined under three dominant temperature conditions. Subsequently, the Preisach model for the PMA-based ER fluid is identified using experimental multiple first order descending (FOD) curves. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one under the both specified and unspecified temperatures. In addition, the hysteresis model proposed in this work is compared to Bingham model.

Dynamic Modeling and Repulsive Force Control of Medical Hpatic Master (의료용 햅틱 마스터의 동적 모델링과 힘 반향 제어)

  • Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • In this research, a new type of haptic master device using electrorheological(ER) fluid for minimally invasive surgery(MIS) is devised and control performance of the proposed haptic master is evaluated. The proposed haptic master consists of ER bi-directional clutch/brake for 2 DOF rotational motion(X, Y) using gimbal structure and ER brake on the gripper for 1 DOF rotational motion (Z). Using Bingham characteristic of ER fluid and geometrical constraints, principal design variables of the haptic master are determined. Then, the generation of torque of the proposed master is experimentally evaluated as a function of applied field of voltage. A sliding mode controller which is robust to uncertainties is then designed and empirically realized. It has been demonstrated via experiment that the proposed haptic master associated with the controller can be effectively applied to MIS in real field conditions.