• 제목/요약/키워드: ER(Electrorheological Fluid)

검색결과 87건 처리시간 0.02초

Electrical and rheological properties of chitosan malonate suspension

  • Ko, Young-Gun;Choi, Ung-Su
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.345-346
    • /
    • 2002
  • The electrical and rheological properties of a chitosan malonate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively. The chitosan malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress for the suspension exhibited a linear dependence on the volume fraction and an electric field power of 1.88. On the basis of the results, the newly synthesized chitosan malonate suspension was found to be an anhydrous ER fluid.

  • PDF

Electrorheology of conducting polyaniline-$BaTiO_3$ composite

  • Kim Ji-Hye;Fang Fei Fei;Lee Ki-Bo;Choi Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.103-107
    • /
    • 2006
  • Organic-inorganic composite of polyaniline and barium titanate (PANI-$BaTiO_3$) was synthesized via an in-situ oxidation polymerization of aniline in the presence of barium titanate ($BaTiO_3$) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/$BaTiO_3$ composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/$BaTiO_3$ composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic $BaTiO_3$ particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.

지능형 완충기의 특성 해석 (Performance Analysis of Smart Impact Damper)

  • 이덕영;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

ER 유체를 이용한 회전식 약실 축계의 비틀림 진동 제어 (Torsional Vibration Control of a Rotating Chamber Shaft System Using Electrorheological Fluid)

  • 임승철;김기갑;길성진;심정수;차기업
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.17-24
    • /
    • 2011
  • 간헐 회전식 약실 계가 화력 대 무장 공간의 비율 관점에서 볼 때 중구경 자동포에 크게 유익하다고 보고되었다. 그러나 약실계의 핵심 부품인 평행 인덱스가 인덱스 터릿에 설치되는 캠종동절의 상대적으로 낮은 횡 강성으로 인하여 비틀림 방향으로 유연해지는 경향이 있으며, 이는 결국 터릿과 약실 사이의 연결 축이 상당한 크기의 비틀림 잔류 진동에 노출되어 탄 장전과 발사 시에 심각한 비정렬 문제를 야기시킬 수 있다. 이러한 맥락에서 본 논문에서는 상기 진동을 억제하는 ER 유체 작동기와 그에 적합한 반능동 제어 알고리듬을 제안하게 되었으며, 전체 계의 수학적 모델링과 컴퓨터 시뮬레이션을 통하여 그 성능이 만족스러움을 입증하였다.

유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법 (Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper)

  • 이덕영;박성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

Vibration isolation with smart fluid dampers: a benchmarking study

  • Batterbee, D.C.;Sims, N.D.
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.235-256
    • /
    • 2005
  • The non-linear behaviour of electrorheological (ER) and magnetorheological (MR) dampers makes it difficult to design effective control strategies, and as a consequence a wide range of control systems have been proposed in the literature. These previous studies have not always compared the performance to equivalent passive systems, alternative control designs, or idealised active systems. As a result it is often impossible to compare the performance of different smart damper control strategies. This article provides some insight into the relative performance of two MR damper control strategies: on/off control and feedback linearisation. The performance of both strategies is benchmarked against ideal passive, semi-active and fully active damping. The study relies upon a previously developed model of an MR damper, which in this work is validated experimentally under closed-loop conditions with a broadband mechanical excitation. Two vibration isolation case studies are investigated: a single-degree-of-freedom mass-isolator, and a two-degree-of-freedom system that represents a vehicle suspension system. In both cases, a variety of broadband mechanical excitations are used and the results analysed in the frequency domain. It is shown that although on/off control is more straightforward to implement, its performance is worse than the feedback linearisation strategy, and can be extremely sensitive to the excitation conditions.