• Title/Summary/Keyword: EPS (Electric Power Steering)

Search Result 55, Processing Time 0.024 seconds

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

Development of Human Driver Model based on Neuromuscular System for Evaluation of Electric Power Steering System (전동식 조향 장치의 성능 평가를 위한 신경 근육계 기반 운전자 모델 개발)

  • Lee, Sunghyun;Lee, Dongpil;Lee, Jaepoong;Chae, Heungseok;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2017
  • This paper presents a lateral driver model with neuromuscular system to evaluate the performance of electric power steering (EPS). Output of most previously developed driver models is steering angle. However, in order to evaluate EPS system, driver model which results in steering torque output is needed. The proposed lateral driver model mainly consists of 2 parts: desired steering angle calculation and conversion of steering angle into steering torque. Desired steering angle calculation part results in steering angle to track desired yaw rate for path tracking. Conversion of steering angle into torque is consideration with neuromuscular system. The proposed driver model is investigated via actual driving data. Compared to other algorithms, the proposed algorithm shows similar pattern of steering angle with human driver. The proposed driver can be utilized to efficiently evaluate EPS system in simulation level.

A Development of Hardware-in-the Loop Simulation System For a Electric Power Steering System (전동식 동력 조향 장치 연구를 의한 HILS 시스템 개발)

  • Park, Dong-Jin;Yun, Seok-Chan;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2883-2890
    • /
    • 2000
  • In this study, a Hardware-In-The-Loop-Simulation(HILS) system for developing a Electric-Power-Steering(EPS) system is designed. To test a EPS by HILS system, a mathematical vehicle model with a steering system model has been constructed. This mathematical model has been constructed. This mathematical model has been downloaded to the Digital-Signal-Processor(DSP) board. To realize the lateral force acting on the front wheel in a real car. the steering wheel angle sensor and vehicle velocity have been used for input signal. The force sensor has been used for a feedback signal. The full vehicle states could by simulated by the HILS system. Consequently, the HILS system could by used to analyze control-parameters of a EPS that contributes to the maneuverability and stability of a vehicle. At the same time, the HILS system can evaluate the whole performance of the vehicle-steering system. Also the HILS system could do test could not be executed in real vehicle. The HILs system will useful for developing the control logic for the EPS system.

Active Cancellation of PMSM Torque Ripple Caused by Magnetic Saturation for EPS Applications

  • Lee, Geun-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.176-180
    • /
    • 2010
  • This paper deals with a control method to reduce the torque ripple of a permanent magnet synchronous motor (PMSM) for electric power steering (EPS) systems. Such an application requires a very low torque ripple in order to maintain a good steering feel. However, because of spatial limitations, it cannot help having a partial saturation in the iron core of the PMSM for an EPS system, and this saturation results in a significant torque ripple. Thus, this paper analyzes the torque ripple caused by the magnetic saturation of a PMSM and proposes a method with respect to inductance measurement to verify the partial saturation. In addition, it is shown that a compensation current is needed in order to minimize the torque ripple when a PMSM is driven in the high torque region. The estimation process of the current and the torque ripple decreased by the current are presented and verified with test results.

Design Characteristics of PM Motor for Electric Power Steering Aimed at Cogging Torque and Torque Ripples Reduction (코깅토크 및 토크리플 저감을 위한 EPS용 영구자석 전동기 설계 특성)

  • Lee, Sang-Gon;Kim, Chang-Ki;Kim, Sang-Hoon;Jeong, Yu-Seok;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.613_614
    • /
    • 2009
  • Electric power steering(EPS) has many attentions such as fuel consumption improvement, thus it has been widely adopted for automotive application in recent years. In the EPS system, torque vibrations are directly transferred through the steering wheel to the hands of the driver. Hence, the design of PM motors for the EPS should be performed in order to reduce torque ripples including cogging torque. In this paper, Surface mounted Permanent Magnet Synchronous Motor(SPMSM) is designed to reduce torque ripples and cogging torque at a same time for the EPS propulsion and the design results are verified with the experimental ones.

  • PDF

Study on Concurrent Simulation Technique of EPS and A Full Car Model (EPS와 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bong-Choon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.785-787
    • /
    • 2010
  • It is well known that most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the Electric Power System(EPS) or Motor Driven Power System(MDPS) has widely equipped in passenger vehicles. In this research the concurrent simulation technique for an EPS system with MATLAB/SIMULINK and a full vehicle model has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for SUV. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

  • PDF

Scheduling Design and Simulation of Software Components for EPS System based on AUTOSAR (AUTOSAR기반 EPS 시스템 소프트웨어 컴포넌트의 스케줄링 설계 및 시뮬레이션)

  • Park, Gwang-Min;Kum, Dae-Hyun;Son, Byeong-Jeom;Lee, Seong-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.539-545
    • /
    • 2010
  • Through the AUTOSAR methodology, the embedded software shall become more flexible, reusable, maintainable than ever. However, it is not mentioned about specific timing constraints of software components in AUTOSAR. There are a few basic principles for mapping runnable entities. At this point, AUTOSAR software design with optimal scheduling method is one of the enabling technologies in vehicle embedded system. This paper presents an approach based on mapping runnable entities and task scheduling design method for EPS (Electric Power Steering) software components, based on AUTOSAR. In addition, the experimental results of concurrent simulation show that the proposed scheduling technique and timing synchronization in the software component design can achieve the improved torque ripple performance and it well suited for EPS application software.

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.